IMG-LOGO

Câu hỏi:

13/07/2024 162

Cho phương trình \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\) (*). Có bao nhiêu giá trị nguyên của tham số m [–2019; 2019] để phương trình (*) có nghiệm?


A. 2021


Đáp án chính xác


B. 2019



C. 4038



D. 2020.


Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Điều kiện:\({\rm{ }}\left\{ {\begin{array}{*{20}{l}}{x > 0}\\{m + {{\log }_2}x \ge 0}\end{array}} \right.\)

Ta có: \(\log _2^2x - 2{\log _2}x - \sqrt {m + {{\log }_2}x} = m\)

\( \Leftrightarrow 4\log _2^2x - 8{\log _2}x - 4\sqrt {m + {{\log }_2}x} = 4m\)

\( \Leftrightarrow 4\log _2^2x - 4{\log _2}x + 1 = 4\sqrt {m + {{\log }_2}x} + 4\left( {m + {{\log }_2}x} \right) + 1\)

\( \Leftrightarrow {\left( {2{{\log }_2}x - 1} \right)^2} = {\left( {2\sqrt {m + {{\log }_2}x} + 1} \right)^2}\)

\( \Leftrightarrow \left[ \begin{array}{l}2{\log _2}x - 1 = 2\sqrt {m + {{\log }_2}x} + 1\\ - 2{\log _2}x + 1 = 2\sqrt {m + {{\log }_2}x} + 1\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}{\log _2}x - 1 = \sqrt {m + {{\log }_2}x} \\ - {\log _2}x = \sqrt {m + {{\log }_2}x} \end{array} \right.\)

Xét phương trình \(lo{g_2}x - 1 = \sqrt {m + {{\log }_2}x} \)     (1)

\(\begin{array}{l} \Leftrightarrow {\left( {lo{g_2}x - 1} \right)^2} = {\left( {\sqrt {m + {{\log }_2}x} } \right)^2}\\ \Leftrightarrow \log _2^2x - 2{\log _2}x + 1 - m - {\log _2}x = 0\\ \Leftrightarrow \log _2^2x - 3{\log _2}x + 1 - m = 0\end{array}\)

Phương trình (1) có nghiệm

\(\begin{array}{l} \Leftrightarrow \Delta \ge 0 \Leftrightarrow 9 - 4\left( {1 - m} \right) \ge 0\\ \Leftrightarrow 5 + 4m \ge 0\\ \Leftrightarrow m \ge \frac{{ - 5}}{4}\end{array}\)

Xét phương trình \( - lo{g_2}x = \sqrt {m + {{\log }_2}x} \)       (2)

\(\begin{array}{l} \Leftrightarrow {\left( { - lo{g_2}x} \right)^2} = {\left( {\sqrt {m + {{\log }_2}x} } \right)^2}\\ \Leftrightarrow \log _2^2x - {\log _2}x - m = 0\end{array}\)

Phương trình (2) có nghiệm

\(\begin{array}{l} \Leftrightarrow \Delta \ge 0\\ \Leftrightarrow 1 + 4m \ge 0\\ \Leftrightarrow m \ge \frac{{ - 1}}{4}\end{array}\)

ĐểPt (*) có nghiệm thì ít nhất một trong 2 phương trình (1) hoặc (2) phải có nghiệm

Từ đề bài ta suy ra \(\frac{{ - 5}}{4} \le m \le 2019\)

Suy ra có \(\frac{{2019 + 1}}{1} + 1 = 2021\) giátrịnguyên của m thỏa mãn bài toán

Vậy ta chọn đáp án A.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ một hộp chứa sáu quả cầu trắng và bốn quả cầu đen, lấy ngẫu nhiên đồng thời bốn quả, tính xác suất sao cho:

a) Bốn quả lấy ra cùng màu;

b) Có ít nhất một quả màu trắng.

Xem đáp án » 02/10/2023 179

Câu 2:

Trong mặt phẳng (Oxy) cho A(1; 2), B(4; 1), C(5; 4). Tính \(\widehat {BAC}\).

Xem đáp án » 02/10/2023 171

Câu 3:

Cho hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông cân tại A, AB = AC = a và \[{\rm{AA}}' = a\sqrt 2 \]. Thể tích khối cầu ngoại tiếp hình tứ diện AB’A’C là:

Xem đáp án » 02/10/2023 170

Câu 4:

Cho tam giác ABC và đặt \(\overrightarrow a = \overrightarrow {BC} ,\overrightarrow b = \overrightarrow {AC} \). Cặp vectơ nào sau đây cùng phương:

Xem đáp án » 02/10/2023 168

Câu 5:

Cho α và β là hai góc nhọn bất kỳ thỏa mãn α + β = 90°. Khẳng định nào sau đây là đúng?

Xem đáp án » 02/10/2023 164

Câu 6:

Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

Xem đáp án » 02/10/2023 154

Câu 7:

Với những giá trị nào của m thì đồ thị các hàm số y = 2x + (3 + m) và y = 3x + (5 – m) cắt nhau tại một điểm trên trục tung?

Xem đáp án » 02/10/2023 147

Câu 8:

Cho hình bình hành ABCD tâm O. Khi đó \(\overrightarrow {OB} - \overrightarrow {OA} \) bằng:

Xem đáp án » 02/10/2023 142

Câu 9:

Gieo ba con súc sắc. Xác suất để được nhiều nhất hai mặt 5 là.

Xem đáp án » 02/10/2023 141

Câu 10:

Cho tanα = 2. Tính giá trị của biểu thức \(G = \frac{{2\sin \alpha + cos\alpha }}{{cos\alpha - 3\sin \alpha }}\).

Xem đáp án » 02/10/2023 138

Câu 11:

Cho hình bình hành ABCD. M là điểm bất kì, khi đó:

Xem đáp án » 02/10/2023 134

Câu 13:

Bất phương trình \({\log _{\frac{2}{3}}}\left( {2{{\rm{x}}^2} - x - 1} \right) > 0\) có tập nghiệm là (a; b) (c; d). Tính tổng a + b + c + d.

Xem đáp án » 02/10/2023 130

Câu 14:

Cho tam giác ABC có thể xác định được bao nhiêu vectơ (khác vectơ không) có điểm đầu và điểm cuối là đỉnh A, B, C?

Xem đáp án » 02/10/2023 126

Câu 15:

Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình f(x) < ex + m đúng với mọi x thuộc (-1; 1) khi và chỉ khi: A. m  (ảnh 1)

Bất phương trình f(x) < ex + m đúng với mọi x (–1; 1) khi và chỉ khi:

Xem đáp án » 02/10/2023 123

Câu hỏi mới nhất

Xem thêm »
Xem thêm »