Giải các phương trình và hệ phương trình sau:
Giải phương trình .
Đặt phương trình trở thành .
Ta có nên phương trình có hai nghiệm (loại), (nhận).
Với .
Tập nghiệm phương trình là S = {16}.
Cho đường tròn tâm O đường kính AB và một điểm C tùy ý trên (O) (C khác A, B và AC < CB). Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau tại D. Dựng CH vuông góc với BD tại H (H nằm trên BD). Đường thẳng DO cắt CH và CB lần lượt tại M và N.
1) Chứng minh tứ giác CNHD nội tiếp được trong đường tròn.
2) Chứng minh CM = CO.
3) Các đường thẳng AB và CD cắt nhau tại E. Chứng minh EA.EB = EC2.
4) Khi quay tam giác DNB một vòng quanh cạnh DN ta được một hình nón. Biết OB = 6cm, BD = 8cm. Tính thể tích của hình nón tạo thành.
Bác Tư đến siêu thị mua một cái quạt máy và một ấm đun siêu tốc với tổng số tiền theo giá niêm yết là 630 000 đồng. Tuy nhiên, trong tuần lễ tri ân khách hàng nên siêu thị đã giảm giá quạt máy 15% và giảm giá ấm đun siêu tốc 12% so với giá niêm yết của từng sản phẩm. Nên Bác Tư chỉ phải trả 543 000 đồng khi mua hai sản phẩm trên. Hỏi giá niêm yết (khi chưa giảm giá) của một cái quạt máy và một ấm đun siêu tốc là bao nhiêu?
Cho Parabol và đường thẳng (d): y = -0,5x + 2.
1) Vẽ đồ thị của hàm số .
2) Viết phương trình đường thẳng biết vuông góc với (d) và tiếp xúc (P)
Cho phương trình: với m là tham số.
1) Tìm các giá trị của tham số m để phương trình đã cho có hai nghiệm phân biệt x1 , x2
2) Tìm hệ thức liên hệ giữa x2 và x2 mà không phụ thuộc vào tham số m.