Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left| {f\left( x \right) - 2} \right| = m\) có đúng 5 nghiệm phân biệt?
A. 3
B. 4
C. 5
D. 2
Đặt \(g\left( x \right) = f\left( x \right) - 2.\) Ta có bảng biến thiên \(y = f\left( x \right)\) ta có:
Suy ra \(\left| {g\left( x \right)} \right| = \left| {f\left( x \right) - 2} \right|\) có bảng biến thiên:
Ta có số nghiệm phương trình \(\left| {f\left( x \right) - 2} \right| = m\) chính là số giao điểm của đồ thị \(y = \left| {g\left( x \right)} \right| = \left| {f\left( x \right) - 2} \right|\) và \(y = m.\)
Dựa vào bảng biến thiên ta thấy 2 đồ thị \(y = \left| {g\left( x \right)} \right| = \left| {f\left( x \right) - 2} \right|\) và \(y = m\) có 5 giao điểm khi \(1 \le m \le 4.\)
Vì \(m\) là số nguyên nên \(m \in \left\{ {1\,;\,\,2\,;\,\,3} \right\}.\)
Vậy có 3 giá trị nguyên \(m\) cần tìm. Chọn A.
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Trong thí nghiệm Y-âng, chiếu đồng thời hai bức xạ có bước sóng \({\lambda _1} = 0,45\mu m\)và \({\lambda _2} = 0,63\,\mu m.\) Trên màn quan sát, gọi M, N là hai điểm nằm cùng một phía so với vân trung tâm. Biết tại điểm M trùng với vị trí vân sáng bậc 5 của bức xạ \({\lambda _2}\), tại điểm N trùng với vị trí vân sáng bậc 14 của bức xạ \({\lambda _1}\). Tính số vân sáng quan sát được trên khoảng MN (không kể M, N) ?
Đáp án: ……….
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Đồ thị nào dưới đây biểu diễn đúng sự biến đổi nồng độ các chất theo thời gian của phản ứng A + 2B → C?
Tập hợp các giá trị của \(m\) để hàm số \(y = - m{x^3} + {x^2} - 3x + m - 2\) nghịch biến trên khoảng \[\left( { - 3\,;\,\,0} \right)\] là
PHẦN 2: TƯ DUY ĐỊNH TÍNH
Lĩnh vực: Ngữ văn (50 câu – 60 phút)
Trên mặt phẳng tọa độ \[Oxy,\] cho hình bình hành \[ABCD\] có phương trình đường thẳng \[AB\] là \(2x + y + 7 = 0\), phương trình đường thẳng \[AD\] là \(x - 4y - 1 = 0\) và giao điểm của hai đường chéo \[AC,\,\,BD\] là \[I\left( {1\,;\,\,2} \right).\] Phương trình của đường thẳng \[BC\] là
Cho biểu đồ:
KHỐI LƯỢNG HÀNG HÓA VẬN CHUYỂN
MỘT SỐ NGÀNH VẬN TẢI NƯỚC TA GIAI ĐOẠN 2000-2020
(Nguồn: Niên giám Thống kê Việt Nam năm 2020, NXB Thống kê, 2021)
Biểu đồ thể hiện nội dung nào sau đây?
Cho hàm số bậc bốn \(y = f\left( x \right)\) có bảng biến thiên như sau:
Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(g\left( x \right) = {e^{f\left( x \right)}} - m \cdot {3^{f\left( x \right)}}\) có đúng 7 điểm cực trị?
Trong một hộp có 100 tấm thẻ được đánh số từ 101 đến 200 (mỗi tấm thẻ được đánh một số khác nhau). Lấy ngẫu nhiên đồng thời 3 tấm thẻ trong hộp. Xác suất để tổng các số ghi trên 3 tấm thẻ đó là một số chia hết cho 3 là