Cho hình nón \((N)\) có góc ở đỉnh bằng \(120^\circ .\) Mặt phẳng qua trục của \((N)\), cắt \((N)\) theo một thiết diện là tam giác có bán kính đường tròn ngoại tiếp bằng 4. Thể tích của khối nón \((N)\) là
Gọi tam giác \[SAB\] là thiết diện của hình nón khi cắt bởi mặt phẳng đi qua đỉnh.
Và \(R\) là bán kính đường tròn ngoại tiếp tam giác \[SAB,{\rm{ }}r\] là bán kính hình nón.
Áp dụng định lý sin trong tam giác \[SAB\], ta có:
\(\frac{{AB}}{{\sin \widehat {ASB}}} = 2R \Rightarrow AB = 2R \cdot \sin \widehat {ASB} = 4\sqrt 3 \Rightarrow r = \frac{{AB}}{2} = 2\sqrt 3 .\)Mặt khác, \(\tan \widehat {OSB} = \frac{{OB}}{{SO}} \Rightarrow SO = h = \frac{{OB}}{{\tan \widehat {OSB}}} = \frac{r}{{\tan 60^\circ }} = 2.\)
Thể tích khối nón là \(V = \frac{1}{3}\pi {r^2}h \Rightarrow V = \frac{1}{3}\pi {\left( {2\sqrt 3 } \right)^2} \cdot 2 = 8\pi .\) Chọn A.
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Trên mặt phẳng tọa độ \[Oxy,\] cho hình bình hành \[ABCD\] có phương trình đường thẳng \[AB\] là \(2x + y + 7 = 0\), phương trình đường thẳng \[AD\] là \(x - 4y - 1 = 0\) và giao điểm của hai đường chéo \[AC,\,\,BD\] là \[I\left( {1\,;\,\,2} \right).\] Phương trình của đường thẳng \[BC\] là
Đồ thị nào dưới đây biểu diễn đúng sự biến đổi nồng độ các chất theo thời gian của phản ứng A + 2B → C?
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = \sqrt 3 \,,\,\,BC = 1\) và các cạnh bên của hình chóp cùng bằng \(\sqrt 5 .\) Gọi \(M\) là trung điểm của \[SC.\] Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABCD} \right)\).
Cho một tấm nhôm hình vuông cạnh 1m như hình sau:
Người ta cắt phần tô đậm của tấm nhôm rồi gập thành một hình chóp tứ giác đều có cạnh đáy bằng x (m). Tìm giá trị của x để khối chóp nhận được có thể tích lớn nhất (kết quả làm tròn đến hàng phần trăm).
Cho sơ đồ sự phân li của \({\rm{NaCl}}\) trong môi trường \({{\rm{H}}_2}{\rm{O}}\):
Cho các phát biểu:
(a) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) có tương tác với các ion.
(b) \({{\rm{H}}_2}{\rm{O}}\) là một chất phân cực, nguyên tử \({\rm{H}}\) mang một phần điện tích âm, nguyên tử O mang một phần điện tích dương.
(c) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ kéo ion ra khỏi cấu trúc tinh thể \({\rm{NaCl}}\).
(d) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ bao quanh các ion \({\rm{N}}{{\rm{a}}^ + }\)và \({\rm{C}}{{\rm{l}}^ - }.\)
Trong các phát biểu trên, số phát biểu đúng là
Trong không gian \[Oxyz,\] cho điểm \[A\left( {1\,;\,\,1\,;\,\, - 2} \right)\] và mặt phẳng \((P):2x + 2y + z + 1 = 0.\) Gọi \(M\) là điểm bất kì thuộc \((P)\), độ dài nhỏ nhất của đoạn thẳng \[AM\] là
Trên mặt phẳng tọa độ \[Oxy,\] giá trị của tham số \(m\) để đường thẳng \(\Delta :x - 2y + m = 0\) cắt elip \((E):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) tại hai điểm phân biệt là
Trên mặt phẳng toạ độ \[Oxy,\] tập hợp biểu diễn số phức \(z\) thỏa mãn \[\left| {{{\left| z \right|}^2} - z\left( {\bar z + i} \right) - i} \right| = 3\] là đường tròn \((C).\) Khoảng cách từ tâm \(I\) của đường tròn \((C)\) đến trục tung bằng