Anh Duy làm bồi bàn tại một nhà hàng ở Hà Nội. Với mỗi bàn phục vụ anh ấy có thể kiếm được 15 hóa đơn. Trong bữa trưa, anh ấy phục vụ 12 bàn và mỗi bàn có hóa đơn trung bình là \[500\,\,000\] đồng. Biết vào buổi tối, mỗi bàn có hóa đơn trung bình là \[900\,\,000\] đồng. Số bàn tối thiểu mà anh ấy cần phục vụ để kiếm được ít nhất \[3\,\,600\,\,000\] đồng trong ngày là
Số bàn anh Duy phục vụ trong bữa tối là \(t\,\,\left( {t \in \mathbb{N}} \right).\)
Số tiền anh Duy kiếm được trong bữa trưa là: \(15\% \cdot 12 \cdot 500\,\,000 = 900\,\,000\) (đồng)
Số tiền anh Duy kiếm được trong bữa tối là: \[15\% \cdot t \cdot 900\,\,000 = t \cdot 135\,\,000\] (đồng)
Tổng số tiền anh Duy kiếm được trong ngày là: \(900\,\,000 + t \cdot 135\,\,000\) (đồng)
Anh Duy kiếm được ít nhất \[3\,\,600\,\,000\] đồng mỗi ngày khi
\(900\,\,000 + t \cdot 135\,\,000 \ge 3\,\,600\,\,000 \Leftrightarrow t \ge 20.\)
Vậy số bàn tối thiểu thỏa yêu cầu bài toán là \(t + 12 = 20 + 12 = 32.\) Chọn A.
Cho hình lập phương \(ABCD.A'B'C'D'.\) Gọi \(M\) là trung điểm của \(B'C'.\) Góc giữa hai đường thẳng AM và \(BC'\) bằng
Biết rằng đồ thị của hàm số \(y = \frac{{\left( {n - 3} \right)x + n - 2017}}{{x + m + 3}}\) (\[m,\,\,n\] là tham số thực) nhận trục hoành làm tiệm cận ngang và trục tung làm tiệm cận đứng. Tính \[m + n.\]
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức \[h\left( t \right) = 29 + 3\sin \left[ {\frac{\pi }{{12}}\left( {t - 9} \right)} \right]\] với \(h\) tính bằng độ \(C\) và \(t\) là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là
Thủy phân hoàn toàn 1 mol pentapeptide X, thu được 2 mol glyin (Gly), 1 mol alanine (Ala), 1 mol valine (Val) và 1 mol phenylalanine (Phe). Thủy phân không hoàn toàn X thu được dipeptide Val-Phe và tripeptide Gly-Ala- Val nhưng không thu được dipeptide Gly-Gly. Chất X có công thức là
Có bao nhiêu số nguyên \(x\) thỏa mãn \({\log _2}\frac{{{x^2} - 1}}{{81}} < {\log _3}\frac{{{x^2} - 1}}{{16}}\)?
Cho các tập hợp khác rỗng \(A = \left[ {2m\,;\,\,m + 3} \right]\) và \(B = \left( { - \infty \,;\,\, - 2} \right] \cup \left( {4\,;\,\, + \infty } \right).\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để \(A \cap B \ne \emptyset \)?
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Tình huống là một lát cắt của sự sống, là một khoảnh khắc diễn ra có phần bất ngờ nhưng cái quan trọng là sẽ chi phối nhiều điều trong cuộc sống con người.
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,;\,\,3} \right]\) để hàm số \(y = {x^3} - \frac{3}{2}\left( {2m - 3} \right){x^2} + m + 2\) có hai điểm cực trị và hoành độ điểm cực tiểu nhỏ hơn 2?
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) sao cho Xét hàm số \(g\left( x \right) = f\left( {{x^3} + x} \right) - {x^2} + 2x + m.\) Giá trị của tham số \(m\) để \[{\max _{x \in \left[ {0\,;\,\,2} \right]}}g\left( x \right) = 8\] là\({\max _{x \in \left[ {0\,;\,\,10} \right]}}f\left( x \right) = f\left( 2 \right) = 4.\)
Tìm tất cả các giá trị thực của tham số \(m\) thì phương trình \(m{x^2} - 2\left( {m - 2} \right)x + m - 3 = 0\) có hai nghiệm dương phân biệt?