Cho hàm số \(y = f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\), có bảng xét dấu của \[f'\left( x \right)\] như hình sau:
Số điểm cực trị của hàm số \(y = f\left( {{e^{{x^2} - \,\left| x \right| - 2}}} \right)\) là
Xét hàm số \(g\left( x \right) = f\left( {{e^{{x^2} - \,x - 2}}} \right)\,;\,\,g'\left( x \right) = \left( {2x - 1} \right){e^{{x^2} - x - 2}} \cdot f'\left( {{e^{{x^2} - \,x - 2}}} \right)\);
\(g'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2x - 1 = 0}\\{f'\left( {{e^{{x^2} - x - 2}}} \right) = 0}\end{array}} \right.\)Với \(2x - 1 = 0 \Leftrightarrow x = \frac{1}{2}.\)
Với \(f'\left( {{e^{{x^2} - x - 2}}} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{{e^{{x^2} - x - 2}} = - 2\,({\rm{VN}})}\\{{e^{{x^2} - x - 2}} = 0}\\{{e^{{x^2} - x - 2}} = 1}\end{array}({\rm{VN}})\,\, \Leftrightarrow {x^2} - x - 2 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = - 1}\\{x = 2}\end{array}} \right.} \right..\)
Suy ra phương trình \(g'\left( x \right) = 0\) có 3 nghiệm phân biệt nên hàm số \(g(x)\) có 3 điểm cực trị trong đó có 2 điểm cực trị có hoành độ dương.
Vì vậy hàm số \(g\left( {\,\left| x \right|} \right) = y = f\left( {{e^{{x^2} - \,\left| x \right| - 2}}} \right)\) có 5 điểm cực trị.
Đáp án: 5.
Trong không gian với hệ tọa độ \[Oxyz,\] cho tam giác \[ABC\] có \(A\left( {1\,;\,\,2\,;\,\, - 1} \right),\,\,B\left( {2\,;\,\, - 1\,;\,\,3} \right),\)\(C\left( { - 4\,;\,\,7\,;\,\,5} \right).\) Gọi \(D\left( {a\,;\,\,b\,;\,\,c} \right)\) là chân đường phân giác trong góc \[B\] của tam giác \[ABC.\] Giá trị của \(a + b + 2c\) bằng
Lớp 12D có 45 học sinh, trong đó có 25 em thích môn Văn, 20 em thích môn Toán, 18 em thích môn Tiếng Anh, 6 em không thích môn nào, 5 em thích cả ba môn. Hỏi số em thích chỉ một môn trong ba môn trên là bao nhiêu?
Cho hàm số \(f\left( x \right) = \frac{{ax + 1}}{{bx + c}}\,\,\left( {a,b,c \in \mathbb{R}} \right)\) có bảng biến thiên như sau:
Trong các số \[a,\,\,b,\,\,c\] có bao nhiêu số dương?
Cho hàm số \(y = \frac{{x + 3}}{{x + 1}}\) có đồ thị \[\left( C \right)\] và đường thẳng \(d:y = x - m\), với \(m\) là tham số thực. Biết rằng đường thẳng \(d\) cắt \[\left( C \right)\] tại hai điểm phân biệt \[A\] và \[B\] sao cho điểm \(G\left( {2\,;\,\, - 2} \right)\) là trọng tâm của tam giác \[OAB\] \[(O\] là gốc tọa độ). Giá trị của \(m\) bằng
Có bao nhiêu cặp số nguyên \(\left( {a\,;\,\,b} \right)\) thoả mãn \(a < 5\) và hàm số \(f\left( x \right) = a{x^4} + b{x^3} + {x^2} - 3\) có \({\min _\mathbb{R}}f\left( x \right) = f\left( 0 \right)?\)
Số giờ có ánh sáng mặt trời của một thành phố ở vĩ độ \(40^\circ \) bắc trong ngày thứ \(t\) của một năm không nhuận được cho bởi một hàm số \(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với \(t \in \mathbb{Z}\) và \(0 < t \le 365.\) Thành phố A có đúng 12 giờ có ánh sáng mặt trời vào ngày nào trong năm?\({\rm{A}}\)
Cho hàm số \(y = f\left( x \right) = {m^2}\left( {\sqrt {2 + x} + \sqrt {2 - x} } \right) + 4\sqrt {4 - {x^2}} + m + 1.\) Tổng tất cả các giá trị của \(m\) để hàm số \(y = f\left( x \right)\) có giá trị nhỏ nhất bằng 4 là
Trong không gian với hệ tọa độ \[Oxyz,\] cho hai điểm \(A\left( {0\,;\,\,2\,;\,\, - 2} \right),\,\,B\left( {2\,;\,\,2\,;\,\, - 4} \right).\) Giả sử \[I\left( {a\,;\,\,b\,;\,\,c} \right)\] là tâm đường tròn ngoại tiếp tam giác \[OAB.\] Tính \(T = {a^2} + {b^2} + {c^2}\).
Trong không gian với hệ trục tọa độ \[Oxyz,\] gọi \(I\left( {a\,;\,\,b\,;\,\,c} \right)\) là tâm mặt cầu đi qua điểm \(A\left( {1\,;\,\, - 1\,;\,\,4} \right)\) và tiếp xúc với tất cả các mặt phẳng tọa độ. Tính \(P = a - b + c.\)
Trong không gian \[Oxyz,\] cho mặt phẳng \((\alpha ):ax - y + 2z + b = 0\) đi qua giao tuyến của hai mặt phẳng \((P):x - y - z + 1 = 0\) và \((Q):x + 2y + z - 1 = 0.\) Giá trị của \(a + 4b\) bằng
Trong thí nghiệm giao thoa ánh sáng dùng hai khe Y-âng, biết \({\rm{D}} = 1\;{\rm{m}},{\rm{a}} = 1\;{\rm{mm}}.\) Khoảng cách từ vân sáng thứ 4 đến vân sáng thứ 10 ở cùng bên với vân trung tâm là 3,6 mm. Bước sóng ánh sáng dùng trong thí nghiệm là
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu \((S):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9\) và hai điểm \(A\left( {4\,;\,\,3\,;\,\,1} \right),\,\,B\left( {3\,;\,\,1\,;\,\,3} \right)\,;\,\,M\) là điểm thay đổi trên \((S)\). Gọi \[m,\,\,n\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P = 2M{A^2} - M{B^2}\). Tính \(m - n.\)