Đọc đoạn trích sau đây và trả lời câu hỏi:
Với người già, bất kể ai, cái thời đã qua luôn luôn là thời vàng son. Mỗi thế hệ đều có thời vàng son của họ. Hà Nội thì không thế. Thời nào nó cũng đẹp, một vẻ đẹp riêng cho mỗi lứa tuổi. Cô nói với tôi thế, đã biết nói thế đâu phải đã già. Mấy ngày sau, cô kể tiếp, thành phố cho máy cẩu tới đặt bên kia bờ quàng dây tời vào thân cây si rồi kéo dần lên, mỗi ngày một tí. Sau một tháng, cây lại sống, lại trổ ra lá non, vẫn là cây si của nhiều thế hệ Hà Nội, nghĩ cứ lạ, tưởng là chết đứt bổ ra làm củi, mà lại sống. Cô nói thêm: “Thiên địa tuần hoàn, cái vào ra của tạo vật không thể lường trước được”.
(Một người Hà Nội – Nguyễn Khải)
Giọng điệu chủ đạo của toàn bộ đoạn trích là gì?
A. Chiêm nghiệm, suy tư.
B. Băn khoăn, hoài nghi.
Cách kể của tác giả Nguyễn Khải trong đoạn trích trên thể hiện sự chiêm nghiệm, giàu tính suy tư, triết lí. Tác giả để cho nhân vật cô Hiền suy ngẫm về sức sống của Hà Nội, suy nghĩ về lẽ đời, về quy luật của cuộc sống: Hà Nội thì không thế. Thời nào nó cũng đẹp, một vẻ đẹp riêng cho mỗi lứa tuổi; Thiên địa tuần hoàn, cái vào ra của tạo vật không thể lường trước được. Chọn A.
Do ảnh hưởng của dịch Covid-19 nên doanh thu 6 tháng đầu năm của công ty A không đạt kế hoạch. Cụ thể, doanh thu 6 tháng đầu năm đạt 20 tỷ đồng, trong đó tháng 6 đạt 6 tỷ đồng. Để đảm bảo doanh thu cuối năm đạt được kế hoạch năm, công ty đưa ra chỉ tiêu: kể từ tháng 7, mỗi tháng phải tăng doanh thu so với tháng kề trước \[10\% .\] Hỏi theo chỉ tiêu đề ra thì doanh thu cả năm của công ty A đạt được là bao nhiêu tỷ đồng (làm tròn đến một chữ số thập phân)?
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Anh Tràng cứ luyên thuyên đủ chuyện trên đường đi về nhà, thị thì ngại ngùng lo lắng không biết làm sao?
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức \(G\left( x \right) = 0,024{x^2}\left( {30 - x} \right)\), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp \[(x\] được tính bằng \[mg).\] Lượng thuốc để tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất là
Tìm tất cả các giá trị của tham số \(m\) đế hàm số \(y = {x^3} - \left( {3m + 6} \right){x^2} + \left( {3{m^2} + 12m} \right)x + 1\) nghịch biến trên đoạn \[\left[ {1\,;\,\,3} \right].\]
Hỗn hợp E gồm ba ester mạch hở, đều có bốn liên kết pi (π) trong phân tử, trong đó có một ester đơn chức là ester của metacrylic acid và hai ester hai chức là đồng phân của nhau. Đốt cháy hoàn toàn 12,22 gam E bằng \({O_2}\), thu được 0,37 mol \[{H_2}O\]. Mặt khác, cho 0,36 mol E phản ứng vừa đủ với 234 ml dung dịch NaOH 2,5M, thu được hỗn hợp X gồm các muối của các acid carboxylic không no, có cùng số nguyên tử carbon trong phân tử; hai alcohol không no, đơn chức có khối lượng \({m_1}\) gam và một alcohol no, đơn chức có khối lượng \({m_2}\) gam. Tỉ lệ \({m_1}:{m_2}\)là bao nhiêu?
Hai chất điểm dao động có li độ phụ thuộc theo thời gian được biểu diễn tương ứng bởi hai đồ thị (1) và (2) như hình vẽ. Nhận xét nào dưới đây đúng khi nói về dao động của hai chất điểm?
Có bao nhiêu giá trị nguyên của tham số \(m\) sao cho ứng với mỗi \(m\), hàm số \(y = \frac{1}{3}{x^3} - {x^2} - mx + \frac{2}{3}\) có đúng một điểm cực trị thuộc khoảng \(\left( {0\,;\,\,6} \right)\)?
Đọc đoạn trích sau và trả lời câu hỏi:
Còn trời đất, nhưng chẳng còn tôi mãi,
Nên bâng khuâng tôi tiếc cả đất trời;
Mùi tháng năm đều rớm vị chia phôi,
Khắp sông núi vẫn than thầm tiễn biệt...
Con gió xinh thì thào trong lá biếc,
Phải chăng hờn vì nỗi phải bay đi?
Chim rộn ràng bỗng đứt tiếng reo thi,
Phải chăng sợ độ phai tàn sắp sửa?
(Vội vàng – Xuân Diệu)
Giọng điệu chủ đạo của toàn bộ đoạn trích là gì?
Biết \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} + ax + b}}{{x - 2}} = 6\) với \[a,\,\,b\] là các số nguyên. Tính \(a + b.\)
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \({8^{f\left( x \right) - 2}} - 3 \cdot {4^{f\left( x \right) - 2}} + \left( {m + 3} \right){2^{f\left( x \right) - 2}} - 4 - 2m = 0\) có nghiệm \(x \in \left( { - 1\,;\,\,0} \right)?\)
Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_0^2 {\frac{{f'\left( x \right)}}{{x + 2}}} \;{\rm{d}}x = 3\) và \(f\left( 2 \right) - 2f\left( 0 \right) = - 4.\) Tích phân \(\int\limits_0^1 {\frac{{f\left( {2x} \right)}}{{{{\left( {x + 1} \right)}^2}}}} \;{\rm{d}}x\) bằng