Đọc đoạn trích sau và trả lời câu hỏi:
Mưa đổ bụi êm êm trên bến vắng,
Đò biếng lười nằm mặc nước sông trôi;
Quán tranh đứng im lìm trong vắng lặng
Bên chòm xoan hoa tím rụng tơi bời
Ngoài đường đê cỏ non tràn biếc cỏ,
Đàn sáo đen sà xuống mổ vu vơ
Mấy cánh bướm rập rờn trôi trước gió.
Những trâu bò thong thả cúi ăn mưa.
(Chiều xuân – Anh Thơ)
Nội dung chính của bức tranh chiều xuân là gì?
Nội dung chính của bức tranh chiều xuân trong đoạn thơ là bức tranh con người và cảnh vật êm đềm, nhẹ nhàng. Chọn C.
Cho hình lập phương \(ABCD.A'B'C'D'.\) Gọi \(M\) là trung điểm của \(B'C'.\) Góc giữa hai đường thẳng AM và \(BC'\) bằng
Biết rằng đồ thị của hàm số \(y = \frac{{\left( {n - 3} \right)x + n - 2017}}{{x + m + 3}}\) (\[m,\,\,n\] là tham số thực) nhận trục hoành làm tiệm cận ngang và trục tung làm tiệm cận đứng. Tính \[m + n.\]
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức \[h\left( t \right) = 29 + 3\sin \left[ {\frac{\pi }{{12}}\left( {t - 9} \right)} \right]\] với \(h\) tính bằng độ \(C\) và \(t\) là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là
Thủy phân hoàn toàn 1 mol pentapeptide X, thu được 2 mol glyin (Gly), 1 mol alanine (Ala), 1 mol valine (Val) và 1 mol phenylalanine (Phe). Thủy phân không hoàn toàn X thu được dipeptide Val-Phe và tripeptide Gly-Ala- Val nhưng không thu được dipeptide Gly-Gly. Chất X có công thức là
Có bao nhiêu số nguyên \(x\) thỏa mãn \({\log _2}\frac{{{x^2} - 1}}{{81}} < {\log _3}\frac{{{x^2} - 1}}{{16}}\)?
Cho các tập hợp khác rỗng \(A = \left[ {2m\,;\,\,m + 3} \right]\) và \(B = \left( { - \infty \,;\,\, - 2} \right] \cup \left( {4\,;\,\, + \infty } \right).\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để \(A \cap B \ne \emptyset \)?
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Tình huống là một lát cắt của sự sống, là một khoảnh khắc diễn ra có phần bất ngờ nhưng cái quan trọng là sẽ chi phối nhiều điều trong cuộc sống con người.
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,;\,\,3} \right]\) để hàm số \(y = {x^3} - \frac{3}{2}\left( {2m - 3} \right){x^2} + m + 2\) có hai điểm cực trị và hoành độ điểm cực tiểu nhỏ hơn 2?
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) sao cho Xét hàm số \(g\left( x \right) = f\left( {{x^3} + x} \right) - {x^2} + 2x + m.\) Giá trị của tham số \(m\) để \[{\max _{x \in \left[ {0\,;\,\,2} \right]}}g\left( x \right) = 8\] là\({\max _{x \in \left[ {0\,;\,\,10} \right]}}f\left( x \right) = f\left( 2 \right) = 4.\)
Tìm tất cả các giá trị thực của tham số \(m\) thì phương trình \(m{x^2} - 2\left( {m - 2} \right)x + m - 3 = 0\) có hai nghiệm dương phân biệt?