Đọc đoạn trích sau đây và trả lời câu hỏi:
Khi mỗi mùa rau khúc nở một màu trắng mơ hồ như sương đọng trên những cánh đồng thì trong tôi lại vang lên một câu hỏi. Câu hỏi năm nào cũng vang lên trong tôi và kéo dài mấy chục năm rồi. Một câu hỏi đơn giản đến mức hình như chẳng có ai một lần đặt câu hỏi đó trong cuộc đời mình: Làm thế nào mà những cây rau khúc bé bỏng lại có thể giữ được sự sống của chúng trong đất suốt một năm trời qua mưa bão, nắng gió và đến một ngày lại thức dậy tràn đầy sức sống như thế?. Những hạt rau khúc nhỏ li ti như những hạt bụi. Chúng vùi sâu trong đất với mưa nắng, ngập lụt và bao biến động mà không bị giết chết. Ai cho những hạt rau khúc bé bỏng kia sức mạnh phi thường và sự chịu đựng bền bỉ đến như vậy? Có những câu hỏi về những điều thật nhỏ bé lại chứa đựng cả một bí ẩn lớn của vũ trụ. Và những thứ nhỏ bé ấy lại là “biển” chỉ đường cho con người trong đời sống hầu như mù mờ và vô định này.
(Tôi khóc những cánh đồng rau khúc, Nguyễn Quang Thiều)
Từ “chúng” trong câu văn “Chúng vùi sâu trong đất với mưa nắng, ngập lụt và bao biến động mà không bị giết chết.” thay thế cho đối tượng nào trước đó?
Dựa vào câu văn trước đó: Những hạt rau khúc nhỏ li ti như những hạt bụi. Chúng vùi sâu trong đất với mưa nắng, ngập lụt và bao biến động mà không bị giết chết. Nên từ “chúng” ở đây chỉ những hạt rau khúc. Chọn D.
Cho hình lập phương \(ABCD.A'B'C'D'.\) Gọi \(M\) là trung điểm của \(B'C'.\) Góc giữa hai đường thẳng AM và \(BC'\) bằng
Cho các tập hợp khác rỗng \(A = \left[ {2m\,;\,\,m + 3} \right]\) và \(B = \left( { - \infty \,;\,\, - 2} \right] \cup \left( {4\,;\,\, + \infty } \right).\) Có bao nhiêu giá trị nguyên dương của tham số \(m\) để \(A \cap B \ne \emptyset \)?
Thủy phân hoàn toàn 1 mol pentapeptide X, thu được 2 mol glyin (Gly), 1 mol alanine (Ala), 1 mol valine (Val) và 1 mol phenylalanine (Phe). Thủy phân không hoàn toàn X thu được dipeptide Val-Phe và tripeptide Gly-Ala- Val nhưng không thu được dipeptide Gly-Gly. Chất X có công thức là
Biết rằng đồ thị của hàm số \(y = \frac{{\left( {n - 3} \right)x + n - 2017}}{{x + m + 3}}\) (\[m,\,\,n\] là tham số thực) nhận trục hoành làm tiệm cận ngang và trục tung làm tiệm cận đứng. Tính \[m + n.\]
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức \[h\left( t \right) = 29 + 3\sin \left[ {\frac{\pi }{{12}}\left( {t - 9} \right)} \right]\] với \(h\) tính bằng độ \(C\) và \(t\) là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ cao nhất trong ngày là
Một nam châm thẳng N-S đặt thẳng đứng gần khung dây tròn. Trục của nam châm vuông góc với mặt phẳng của khung dây. Giữ khung dây đứng yên. Lần lượt cho nam châm chuyển động như sau:
I. Tịnh tiến dọc theo trục của nó.
II. Quay nam châm quanh trục thẳng đứng của nó.
III. Quay nam châm quanh một trục nằm ngang và vuông góc với trục của nam châm.
Các trường hợp có dòng điện cảm ứng xuất hiện trong khung dây là
Có bao nhiêu số nguyên \(x\) thỏa mãn \({\log _2}\frac{{{x^2} - 1}}{{81}} < {\log _3}\frac{{{x^2} - 1}}{{16}}\)?
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2\,;\,\,3} \right]\) để hàm số \(y = {x^3} - \frac{3}{2}\left( {2m - 3} \right){x^2} + m + 2\) có hai điểm cực trị và hoành độ điểm cực tiểu nhỏ hơn 2?
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Tình huống là một lát cắt của sự sống, là một khoảnh khắc diễn ra có phần bất ngờ nhưng cái quan trọng là sẽ chi phối nhiều điều trong cuộc sống con người.
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) sao cho Xét hàm số \(g\left( x \right) = f\left( {{x^3} + x} \right) - {x^2} + 2x + m.\) Giá trị của tham số \(m\) để \[{\max _{x \in \left[ {0\,;\,\,2} \right]}}g\left( x \right) = 8\] là\({\max _{x \in \left[ {0\,;\,\,10} \right]}}f\left( x \right) = f\left( 2 \right) = 4.\)