Đọc đoạn trích sau và trả lời câu hỏi:
Bà lão khẽ thở dài đứng lên, đăm đăm nhìn người đàn bà. Thị cúi mặt xuống, tay vân vê tà áo đã rách bợt. Bà lão nhìn thị và bà nghĩ: Người ta có gặp bước khó khăn, đói khổ này, người ta mới lấy đến con mình. Mà con mình mới có vợ được... Thôi thì bổn phận bà là mẹ, bà đã chẳng lo lắng được cho con... May ra mà qua khỏi được cái tao đoạn này thì thằng con bà cũng có vợ, nó yên bề nó, chẳng may ra ông giời bắt chết cũng phải chịu chứ biết thế nào mà lo cho hết được?
(Vợ nhặt – Kim Lân)
Đoạn trích trên thể hiện phẩm chất gì của bà cụ Tứ?
Đoạn trích thể hiện phẩm chất tốt đẹp của bà cụ Tứ. Đó là một người mẹ yêu thương con. Bà thừa hiểu mục đích thị đồng ý lấy Tràng là để kiếm miếng ăn chứ không hề xuất phát từ tình yêu. Hơn nữa trong hoàn cảnh nạn đói bà hoàn toàn có thể không chấp nhận thị. Thế nhưng bà vẫn bằng lòng bởi bà nghĩ nhờ có thế mà con bà mới có vợ và bà cảm thấy vui vì điều này. Chọn A.
Phương trình \({x^3} - 6mx + 5 = 5{m^2}\) có 3 nghiệm phân biệt lập thành cấp số cộng khi
Giả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình \(x = 2\cos \left( {5t - \frac{\pi }{6}} \right).\) Ở đây, thời gian \(t\) tính bằng giây và quãng đường \(x\) tính bằng centimét. Hỏi trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Hội khỏe Phù Đổng của trường Trần Phú, lớp 10A có 45 học sinh, trong đó có 25 học sinh thi điền kinh, 20 học sinh thi nhảy xa, 15 học sinh thi nhảy cao, 7 em không tham gia môn nào, 5 em tham gia cả 3 môn. Hỏi số em tham gia chỉ một môn trong ba môn trên là bao nhiêu?
Trong không gian với hệ trục tọa độ \[Oxyz,\] cho ba điểm \(A\left( {1\,;\,\,0\,;\,\,0} \right),\,\,C\left( {0\,;\,\,0\,;\,\,3} \right),\)\(B\left( {0\,;\,\,2\,;\,\,0} \right).\) Tập hợp các điểm \(M\) thỏa mãn MA2 = MB2 + MC2 là mặt cầu có bán kính là
Cho hàm số \(f\left( x \right) = {x^3} - 3x + 1.\) Có bao nhiêu giá trị nguyên của \(m\) để giá trị nhỏ nhất của hàm số \[y = \left| {f\left( {2\sin x + 1} \right) + m} \right|\] không vượt quá 10?
Có bao nhiêu số nguyên của \(m\) thuộc đoạn \(\left[ { - 100\,;\,\,100} \right]\) để đồ thị hàm số \(y = \frac{1}{{\left( {x - m} \right)\sqrt {2x - {x^2}} }}\) có đúng hai đường tiệm cận?
Tiếp tuyến với đồ thị hàm số \(y = - \frac{1}{4}{x^4} + 2{x^2} + 3\) tại điểm cực tiểu của đồ thị cắt đồ thị ở \[A,\,\,B\] khác tiếp điểm. Độ dài đoạn thẳng \[AB\] là
Trong không gian với hệ trục tọa độ \[Oxyz,\] cho tứ diện \[ABCD\] có \(A\left( {2\,;\,\, - 1\,;\,\,1} \right),\)\(B\left( {3\,;\,\,0\,;\,\, - 1} \right),\)\(C\left( {2\,;\,\, - 1\,;\,\,3} \right),\,\,D \in Oy\) và có thể tích bằng 5. Tổng tung độ của các điểm \(D\) là
Cho hàm số \(f\left( x \right) = m\sqrt {x - 1} \) (\(m\) là tham số thực khác 0). Gọi \({m_1},\,\,{m_2}\) là hai giá trị của \(m\) thỏa mãn \[{\min _{\left[ {2;\,\,5} \right]}}f\left( x \right) + {\max _{\left[ {2;\,\,5} \right]}}f\left( x \right) = {m^2} - 10.\] Giá trị của \({m_1} + {m_2}\) bằng
Một hộp đựng 26 tấm thẻ được đánh số từ 1 đến 26. Bạn Hải rút ngẫu nhiên cùng một lúc ba tấm thẻ. Hỏi có bao nhiêu cách rút sao cho bất kỳ hai trong ba tấm thẻ lấy ra đó có hai số tương ứng ghi trên hai tấm thẻ luôn hơn kém nhau ít nhất 2 đơn vị?
Cho các phát biểu sau: Các polymer đều có nhiệt độ nóng chảy xác định (1); đa số polymer không tan trong các dung môi thông thường (2); cao su là vật liệu polymer có tính đàn hồi (3); tơ polyamide bền trong môi trường acid và môi trường base (4); tơ visco và tơ acetate thuộc loại tơ hóa học (5). Số phát biểu đúng là
Một anh kỹ sư muốn tạo ra 1 cái lu hình trụ có diện tích bề mặt (không tính hai mặt đáy) là lớn nhất. Bề mặt lu được quấn bởi mảnh tôn hình chữ nhật có chu vi \(120\;\,\,{\rm{cm}}.\) Gọi chiều dài của hình chữ nhật là a, chiều rộng của hình chữ nhật là \[b.\] Tính \(P = {a^2} + 3b.\)