Trong không gian \[Oxyz,\] cho mặt phẳng \(\left( P \right):x + y + z - 3 = 0\) và đường thẳng \(d:\frac{x}{1} = \frac{{y + 1}}{2} = \frac{{z - 2}}{{ - 1}}.\) Hình chiếu vuông góc của \[d\] trên \(\left( P \right)\) có phương trình là
Ta có \[d\] đi qua điểm \(M\left( {0\,;\,\, - 1\,;\,\,2} \right)\) và \(\overrightarrow {{u_d}} = \left( {1\,;\,\,2\,;\,\, - 1} \right)\).
Gọi \[\left( Q \right)\] là mặt phẳng chứa \[d\] và vuông góc \(\left( P \right)\).
Khi đó \[\left( Q \right)\] đi qua điểm \(M\left( {0\,;\,\, - 1\,;\,\,2} \right)\) và có \[\overrightarrow {{n_{\left( Q \right)}}} = \left[ {\overrightarrow {{u_d}} \,,\,\,\overrightarrow {{n_{\left( P \right)}}} } \right] = \left( {3\,;\,\, - 2\,;\,\, - 1} \right)\]
\[ \Rightarrow \left( Q \right):3x - 2y - z = 0\]
Gọi \(\Delta \) là hình chiếu vuông góc của \[d\] trên \(\left( P \right)\), khi đó \(\Delta :\left\{ {\begin{array}{*{20}{l}}{3x - 2y - z = 0}\\{x + y + z - 3 = 0}\end{array}} \right.\).
Nên có phương trình chính tắc là \(\frac{{x - 1}}{1} = \frac{{y - 1}}{4} = \frac{{z - 1}}{{ - 5}}\).
Cho \[z = 1\], ta được \[x = 1\,,\,\,y = 1.\] Do đó, điểm \[A\left( {1\,;\,\,1\,;\,\,1} \right)\] nằm trên \[\Delta \].
Ta có đường thẳng \[\Delta \] đi qua điểm \[A\left( {1\,;\,\,1\,;\,\,1} \right)\] và có một vectơ chỉ phương \({\vec u_\Delta } = \left[ {\overrightarrow {{n_P}} ,\,\,\overrightarrow {{n_Q}} } \right] = \left( {1\,;\,\,4\,;\,\, - 5} \right)\).
Do đó \[\Delta \] có phương trình chính tắc là \(\frac{{x - 1}}{1} = \frac{{y - 1}}{4} = \frac{{z - 1}}{{ - 5}}\). Chọn C.
Cho lăng trụ tam giác \[ABC.A'B'C'\], trên đường thẳng \[BA\] lấy điểm \[M\] sao cho \[A\] nằm giữa \[B\] và \[M\], \(MA = \frac{1}{2}AB,\,\,E\) là trung điểm \[AC.\] Gọi \(D = BC \cap \left( {MB'E} \right)\). Tỉ số \(\frac{{BD}}{{CD}}\) bằng
Đáp án: ……….Gọi \[x,\,\,y,\,\,z\] là chiều dài, chiều rộng và chiều cao của một thùng giấy có dạng hình hộp chữ nhật không có nắp bên trên (hình vẽ). Biết rằng tổng diện tích xung quanh và đáy còn lại của thùng bằng 100 (đơn vị diện tích). Khi chiếc thùng có thể tích lớn nhất thì tổng \({x^2} + {y^2} + {z^2}\) bằng
Đáp án: ……….
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Ngôi chùa mang trong nó bao nhiêu sự tích, bao nhiêu huyền thoại và đã chứng minh bao biến thiên của kinh kì.