Đọc đoạn trích sau đây và trả lời câu hỏi:
Ông Huấn Cao lặng nghĩ một lát rồi mỉm cười: “Về bảo với chủ ngươi, tối nay, lúc nào lính canh về trại nghỉ, thì đem lụa, mực, bút và một bó đuốc xuống đây ta cho chữ. Chữ thì quý thực. Ta nhất sinh không vì vàng ngọc hay quyền thế mà ép mình viết câu đối bao giờ. Đời ta cũng mới viết có hai bộ tứ bình và một bức trung đường cho ba người bạn thân của ta thôi. Ta cảm cái tấm lòng biệt nhỡn liên tài của các người. Nào ta có biết đâu một người như thầy Quản đây mà lại có những sở thích cao quý như vậy. Thiếu chút nữa, ta đã phụ mất một tấm lòng trong thiên hạ”.
(Chữ người tử tù – Nguyễn Tuân)
Trong đoạn trích trên, nhân vật Huấn Cao hiện lên với tấm lòng nhân hậu, trọng nhân cách, tình nghĩa điều này được thể hiện qua chi tiết Huấn Cao đồng ý cho viên quản ngục (một người biết trân trọng cái tài và nâng niu cái đẹp) chữ. Chọn A.
Hòa tan hoàn toàn 25,76 gam hỗn hợp X gồm Cu, Fe và một oxide sắt trong 280 gam dung dịch \({\rm{HN}}{{\rm{O}}_3}\) 31,5% thu được dung dịch Y (không chứa \({\rm{N}}{{\rm{H}}_4}{\rm{N}}{{\rm{O}}_3}\)) và hỗn hợp khí \({\rm{Z}}\) (trong đó oxygen chiếm 61,276% về khối lượng). Cho 600 mL dung dịch NaOH 2M vào dung dịch Y. Lọc bỏ kết kết tủa, cô cạn dung dịch nước lọc, sau đó nung tới khối lượng không đổi thu được 81,06 gam chất rắn khan. Mặt khác thổi 9,916 lít khí CO (đkc) qua 25,76 gam X nung nóng thu được hỗn hợp khí T có tỉ khối so với He bằng 9,4. Biết rằng trong X, số mol của Fe gấp đôi số mol của oxide Fe. Các phản ứng xảy ra hoàn toàn. Công thức của oxide Fe là
Đáp án: ……….
Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y = {x^2},\,\,y = 2x\). Thể tích của khối tròn xoay được tạo thành khi quay \(\left( H \right)\) xung quanh trục \[Ox\] bằng
Cho lăng trụ tam giác \[ABC.A'B'C'\], trên đường thẳng \[BA\] lấy điểm \[M\] sao cho \[A\] nằm giữa \[B\] và \[M\], \(MA = \frac{1}{2}AB,\,\,E\) là trung điểm \[AC.\] Gọi \(D = BC \cap \left( {MB'E} \right)\). Tỉ số \(\frac{{BD}}{{CD}}\) bằng
Đáp án: ……….Trong không gian với hệ tọa độ \[Oxyz,\] cho điểm \(A\left( {a\,;\,\,0\,;\,\,0} \right),\,\,B\left( {0\,;\,\,b\,;\,\,0} \right),\,\,C\left( {0\,;\,\,0\,;\,\,c} \right),\) trong đó \(a > 0,\)\(b > 0,\)\(c > 0\)và \(\frac{2}{a} + \frac{1}{b} + \frac{1}{c} = 6\). Biết mặt phẳng \[\left( {ABC} \right)\] tiếp xúc với mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = \frac{{25}}{6}\). Thể tích của khối tứ diện \[OABC\] bằng bao nhiêu?
Đáp án: ……….