Một nguồn sóng điểm O tại mặt nước dao động điều hòa theo phương thẳng đứng với tần số \(10\;{\rm{Hz}}.\) Tốc độ truyền sóng trên mặt nước là 40 cm/s. Gọi \(A\) và \(B\) là hai điểm tại mặt nước có vị trí cân bằng cách \({\rm{O}}\) những đoạn \(12\;{\rm{cm}}\) và \(16\;{\rm{cm}}\) mà \({\rm{OAB}}\) là tam giác vuông tại \({\rm{O}}.\) Tại thời điểm mà phần tử tại \({\rm{O}}\) ở vị trí cao nhất thì trên đoạn AB có mấy điểm mà phần tử tại đó đang ở vị trí cân bằng?
Đáp án: ……….
Bước sóng truyền đi là \(\lambda = \frac{v}{f} = 4\;{\rm{cm}}\)
Ta có \(\frac{1}{{O{H^2}}} = \frac{1}{{O{A^2}}} + \frac{1}{{O{B^2}}} \to OH = 9,6\;{\rm{cm}}\)
Tại thời điểm t khi \({\rm{O}}\) đạt vị trí cao nhất thì điểm ở trên \({\rm{AB}}\) đang ở vị trí cân bằng thỏa mãn: \((2k + 1) = \frac{\lambda }{4} = 2k + 1\)
Số điểm ở vị trí cân bằng trên \({\rm{AB}}\) khi \({\rm{O}}\) đạt cực đại thỏa mãn \({\rm{k}}\) là số nguyên
\(\left\{ {\begin{array}{*{20}{l}}{9,6 \le 2k + 1 \le 12}\\{9,6 \le 2k + 1 \le 16}\end{array} \to \left\{ {\begin{array}{*{20}{l}}{k = 5}\\{k = 5,6,7}\end{array} \to k = 5,6,7} \right.} \right.\). Có 3 vị trí.
Đáp án: 3
Hòa tan hoàn toàn 25,76 gam hỗn hợp X gồm Cu, Fe và một oxide sắt trong 280 gam dung dịch \({\rm{HN}}{{\rm{O}}_3}\) 31,5% thu được dung dịch Y (không chứa \({\rm{N}}{{\rm{H}}_4}{\rm{N}}{{\rm{O}}_3}\)) và hỗn hợp khí \({\rm{Z}}\) (trong đó oxygen chiếm 61,276% về khối lượng). Cho 600 mL dung dịch NaOH 2M vào dung dịch Y. Lọc bỏ kết kết tủa, cô cạn dung dịch nước lọc, sau đó nung tới khối lượng không đổi thu được 81,06 gam chất rắn khan. Mặt khác thổi 9,916 lít khí CO (đkc) qua 25,76 gam X nung nóng thu được hỗn hợp khí T có tỉ khối so với He bằng 9,4. Biết rằng trong X, số mol của Fe gấp đôi số mol của oxide Fe. Các phản ứng xảy ra hoàn toàn. Công thức của oxide Fe là
Đáp án: ……….
Cho hình phẳng \(\left( H \right)\) giới hạn bởi các đường \(y = {x^2},\,\,y = 2x\). Thể tích của khối tròn xoay được tạo thành khi quay \(\left( H \right)\) xung quanh trục \[Ox\] bằng
Cho lăng trụ tam giác \[ABC.A'B'C'\], trên đường thẳng \[BA\] lấy điểm \[M\] sao cho \[A\] nằm giữa \[B\] và \[M\], \(MA = \frac{1}{2}AB,\,\,E\) là trung điểm \[AC.\] Gọi \(D = BC \cap \left( {MB'E} \right)\). Tỉ số \(\frac{{BD}}{{CD}}\) bằng
Đáp án: ……….Trong không gian với hệ tọa độ \[Oxyz,\] cho điểm \(A\left( {a\,;\,\,0\,;\,\,0} \right),\,\,B\left( {0\,;\,\,b\,;\,\,0} \right),\,\,C\left( {0\,;\,\,0\,;\,\,c} \right),\) trong đó \(a > 0,\)\(b > 0,\)\(c > 0\)và \(\frac{2}{a} + \frac{1}{b} + \frac{1}{c} = 6\). Biết mặt phẳng \[\left( {ABC} \right)\] tiếp xúc với mặt cầu \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = \frac{{25}}{6}\). Thể tích của khối tứ diện \[OABC\] bằng bao nhiêu?
Đáp án: ……….