Đọc đoạn trích sau đây và trả lời câu hỏi:
Hồn Trương Ba: (sau một lát) Ông Đế Thích ạ, tôi không thể tiếp tục mang thân anh hàng thịt được nữa, không thể được!
Đế Thích: Sao thế? Có gì không ổn đâu!
Hồn Trương Ba: Không thể bên trong một đằng, bên ngoài một nẻo được. Tôi muốn được là tôi toàn vẹn.
Đế Thích: Thế ông ngỡ tất cả mọi người đều được là mình toàn vẹn ư? Ngay cả tôi đây. Ở bên ngoài, tôi đâu có được sống theo những điều tôi nghĩ bên trong. Mà cả Ngọc Hoàng nữa, chính người lắm khi cũng phải khuôn ép mình cho xứng với danh vị Ngọc Hoàng. Dưới đất, trên trời đều thế cả, nữa là ông. Ông bị gạch tên khỏi sổ Nam Tào. Thân thể thật của ông đã tan rữa trong bùn đất, còn chút hình thù gì của ông đâu!
Hồn Trương Ba: Sống nhờ vào đồ đạc, của cải người khác, đã là chuyện không nên, đằng này đến cái thân tôi cũng phải sống nhờ anh hàng thịt. Ông chỉ nghĩ đơn giản là cho tôi sống, nhưng sống như thế nào thì ông chẳng cần biết!
(Trích Hồn Trương Ba da hàng thịt – Lưu Quang Vũ)
. Đoạn trích được viết theo thể loại kịch. Chọn C.
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Trên mặt phẳng tọa độ \[Oxy,\] cho hình bình hành \[ABCD\] có phương trình đường thẳng \[AB\] là \(2x + y + 7 = 0\), phương trình đường thẳng \[AD\] là \(x - 4y - 1 = 0\) và giao điểm của hai đường chéo \[AC,\,\,BD\] là \[I\left( {1\,;\,\,2} \right).\] Phương trình của đường thẳng \[BC\] là
Đồ thị nào dưới đây biểu diễn đúng sự biến đổi nồng độ các chất theo thời gian của phản ứng A + 2B → C?
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = \sqrt 3 \,,\,\,BC = 1\) và các cạnh bên của hình chóp cùng bằng \(\sqrt 5 .\) Gọi \(M\) là trung điểm của \[SC.\] Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABCD} \right)\).
Cho một tấm nhôm hình vuông cạnh 1m như hình sau:
Người ta cắt phần tô đậm của tấm nhôm rồi gập thành một hình chóp tứ giác đều có cạnh đáy bằng x (m). Tìm giá trị của x để khối chóp nhận được có thể tích lớn nhất (kết quả làm tròn đến hàng phần trăm).
Một học sinh tiến hành cho nhôm rắn tác dụng với dung dịch nước chứa các ion bạc. Phương trình phản ứng được biểu diễn như sau:
\({\rm{Al}}(s) + 3{\rm{A}}{{\rm{g}}^ + }({\rm{aq}}) \to {\rm{A}}{{\rm{l}}^{3 + }}({\rm{aq}}) + 3{\rm{Ag}}(s)\)
Sơ đồ sau đây biểu diễn một số loại hạt trong phản ứng. Cốc bên trái đại diện cho hệ trước khi phản ứng, cốc bên phải đại diện cho hệ sau khi phản ứng.
Số lượng các hạt có trong cốc bên phải là
Amino acid được sản xuất thông qua quá trình lên men các thành phần có nguồn gốc thực vật:
Hỗn hợp X gồm glycine, alanine, glutamic acid trong đó oxygen chiếm 41,719% theo khối lượng. Cho m gam X phản ứng vừa đủ với dung dịch NaOH thu được dung dịch chứa (m + 5,94) gam muối. Giá trị của m là
Cho sơ đồ sự phân li của \({\rm{NaCl}}\) trong môi trường \({{\rm{H}}_2}{\rm{O}}\):
Cho các phát biểu:
(a) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) có tương tác với các ion.
(b) \({{\rm{H}}_2}{\rm{O}}\) là một chất phân cực, nguyên tử \({\rm{H}}\) mang một phần điện tích âm, nguyên tử O mang một phần điện tích dương.
(c) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ kéo ion ra khỏi cấu trúc tinh thể \({\rm{NaCl}}\).
(d) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ bao quanh các ion \({\rm{N}}{{\rm{a}}^ + }\)và \({\rm{C}}{{\rm{l}}^ - }.\)
Trong các phát biểu trên, số phát biểu đúng là
Trong không gian \[Oxyz,\] cho điểm \[A\left( {1\,;\,\,1\,;\,\, - 2} \right)\] và mặt phẳng \((P):2x + 2y + z + 1 = 0.\) Gọi \(M\) là điểm bất kì thuộc \((P)\), độ dài nhỏ nhất của đoạn thẳng \[AM\] là