Đọc đoạn trích sau đây và trả lời câu hỏi:
Cứ vậy, hắn tiến bộ mãi trong nghề nghiệp mō. Người ta càng khinh hắn, càng làm nhục hắn, hắn càng không biết nhục. Hỡi ôi! Thì ra lòng khinh, trọng của chúng ta có ảnh hưởng đến cái nhân cách của người khác nhiều lắm; nhiều người không biết gì là tự trọng, chỉ vì không được ai trọng cả; làm nhục người là một cách rất diệu để khiến người sinh đê tiện...
Bây giờ thì hắn mõ hơn cả những thằng mõ chính tông. Hắn nghĩ ra đủ cách xoay người ta. Vào một nhà nào, nếu không được vừa lòng, là ra đến ngō, hắn chửi ngay, không ngượng:
– Mẹ! Xử bẩn cả với thằng mõ...
(Nam Cao, Tư cách mõ, theo Nam Cao, truyện ngắn tuyển chọn, NXB Văn học, Hà Nội, 1995)
Câu văn mang giọng điệu triết lí: Hỡi ôi! Thì ra lòng khinh, trọng của chúng ta có ảnh hưởng đến cái nhân cách của người khác nhiều lắm; nhiều người không biết gì là tự trọng, chỉ vì không được ai trọng cả; làm nhục người là một cách rất diệu để khiến người sinh đê tiện... Chọn B.
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Trên mặt phẳng tọa độ \[Oxy,\] cho hình bình hành \[ABCD\] có phương trình đường thẳng \[AB\] là \(2x + y + 7 = 0\), phương trình đường thẳng \[AD\] là \(x - 4y - 1 = 0\) và giao điểm của hai đường chéo \[AC,\,\,BD\] là \[I\left( {1\,;\,\,2} \right).\] Phương trình của đường thẳng \[BC\] là
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Đồ thị nào dưới đây biểu diễn đúng sự biến đổi nồng độ các chất theo thời gian của phản ứng A + 2B → C?
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = \sqrt 3 \,,\,\,BC = 1\) và các cạnh bên của hình chóp cùng bằng \(\sqrt 5 .\) Gọi \(M\) là trung điểm của \[SC.\] Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABCD} \right)\).
Cho một tấm nhôm hình vuông cạnh 1m như hình sau:
Người ta cắt phần tô đậm của tấm nhôm rồi gập thành một hình chóp tứ giác đều có cạnh đáy bằng x (m). Tìm giá trị của x để khối chóp nhận được có thể tích lớn nhất (kết quả làm tròn đến hàng phần trăm).
Cho sơ đồ sự phân li của \({\rm{NaCl}}\) trong môi trường \({{\rm{H}}_2}{\rm{O}}\):
Cho các phát biểu:
(a) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) có tương tác với các ion.
(b) \({{\rm{H}}_2}{\rm{O}}\) là một chất phân cực, nguyên tử \({\rm{H}}\) mang một phần điện tích âm, nguyên tử O mang một phần điện tích dương.
(c) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ kéo ion ra khỏi cấu trúc tinh thể \({\rm{NaCl}}\).
(d) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ bao quanh các ion \({\rm{N}}{{\rm{a}}^ + }\)và \({\rm{C}}{{\rm{l}}^ - }.\)
Trong các phát biểu trên, số phát biểu đúng là
Trong không gian \[Oxyz,\] cho điểm \[A\left( {1\,;\,\,1\,;\,\, - 2} \right)\] và mặt phẳng \((P):2x + 2y + z + 1 = 0.\) Gọi \(M\) là điểm bất kì thuộc \((P)\), độ dài nhỏ nhất của đoạn thẳng \[AM\] là
Trên mặt phẳng toạ độ \[Oxy,\] tập hợp biểu diễn số phức \(z\) thỏa mãn \[\left| {{{\left| z \right|}^2} - z\left( {\bar z + i} \right) - i} \right| = 3\] là đường tròn \((C).\) Khoảng cách từ tâm \(I\) của đường tròn \((C)\) đến trục tung bằng
Xác định một từ/ cụm từ SAI về mặt ngữ pháp/ hoặc ngữ nghĩa/ logic/ phong cách.
Trong xã hội ta, không ít người sống ích kỉ, không giúp đỡ bao che cho người khác.