Đối tượng hàng đầu của phong trào cách mạng Việt Nam cần phải giải quyết sau Chiến tranh thế giới thứ nhất là đế quốc Pháp vì mâu thuẫn chủ yếu của xã hội Việt Nam là mâu thuẫn dân tộc. Sau Chiến tranh thế giới thứ nhất, lực lượng nào sau đây không thể tham gia vào giải quyết hai nhiệm vụ dân tộc và dân chủ ở Việt Nam là tư sản mại bản vì tầng lớp này có lợi ích gắn liền với thực dân Pháp, tư bản Pháp nên là bộ phận chống cách mạng. Chọn B.
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Trên mặt phẳng tọa độ \[Oxy,\] cho hình bình hành \[ABCD\] có phương trình đường thẳng \[AB\] là \(2x + y + 7 = 0\), phương trình đường thẳng \[AD\] là \(x - 4y - 1 = 0\) và giao điểm của hai đường chéo \[AC,\,\,BD\] là \[I\left( {1\,;\,\,2} \right).\] Phương trình của đường thẳng \[BC\] là
Đồ thị nào dưới đây biểu diễn đúng sự biến đổi nồng độ các chất theo thời gian của phản ứng A + 2B → C?
Cho sơ đồ sự phân li của \({\rm{NaCl}}\) trong môi trường \({{\rm{H}}_2}{\rm{O}}\):
Cho các phát biểu:
(a) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) có tương tác với các ion.
(b) \({{\rm{H}}_2}{\rm{O}}\) là một chất phân cực, nguyên tử \({\rm{H}}\) mang một phần điện tích âm, nguyên tử O mang một phần điện tích dương.
(c) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ kéo ion ra khỏi cấu trúc tinh thể \({\rm{NaCl}}\).
(d) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ bao quanh các ion \({\rm{N}}{{\rm{a}}^ + }\)và \({\rm{C}}{{\rm{l}}^ - }.\)
Trong các phát biểu trên, số phát biểu đúng là
Trong không gian \[Oxyz,\] cho điểm \[A\left( {1\,;\,\,1\,;\,\, - 2} \right)\] và mặt phẳng \((P):2x + 2y + z + 1 = 0.\) Gọi \(M\) là điểm bất kì thuộc \((P)\), độ dài nhỏ nhất của đoạn thẳng \[AM\] là
Trên mặt phẳng toạ độ \[Oxy,\] tập hợp biểu diễn số phức \(z\) thỏa mãn \[\left| {{{\left| z \right|}^2} - z\left( {\bar z + i} \right) - i} \right| = 3\] là đường tròn \((C).\) Khoảng cách từ tâm \(I\) của đường tròn \((C)\) đến trục tung bằng
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = \sqrt 3 \,,\,\,BC = 1\) và các cạnh bên của hình chóp cùng bằng \(\sqrt 5 .\) Gọi \(M\) là trung điểm của \[SC.\] Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABCD} \right)\).
Cho một tấm nhôm hình vuông cạnh 1m như hình sau:
Người ta cắt phần tô đậm của tấm nhôm rồi gập thành một hình chóp tứ giác đều có cạnh đáy bằng x (m). Tìm giá trị của x để khối chóp nhận được có thể tích lớn nhất (kết quả làm tròn đến hàng phần trăm).
Một học sinh tiến hành cho nhôm rắn tác dụng với dung dịch nước chứa các ion bạc. Phương trình phản ứng được biểu diễn như sau:
\({\rm{Al}}(s) + 3{\rm{A}}{{\rm{g}}^ + }({\rm{aq}}) \to {\rm{A}}{{\rm{l}}^{3 + }}({\rm{aq}}) + 3{\rm{Ag}}(s)\)
Sơ đồ sau đây biểu diễn một số loại hạt trong phản ứng. Cốc bên trái đại diện cho hệ trước khi phản ứng, cốc bên phải đại diện cho hệ sau khi phản ứng.
Số lượng các hạt có trong cốc bên phải là