Giả sử lưới thức ăn của một quần xã sinh vật gồm các loài A, B, C, D, E, G, H. Trong đó A là sinh vật sản xuất, các loài còn lại là sinh vật tiêu thụ. Các loài sinh vật trong quần xã có mối quan hệ dinh dưỡng thể hiện trong sơ đồ sau:
Có bao nhiêu nhận xét đúng khi nói về lưới thức ăn trên?
I. Chuỗi thức ăn dài nhất có 5 bậc dinh dưỡng.
II. Trong lưới thức ăn có 8 chuỗi thức ăn.
III. Khi kích thước quần thể loài E bị giảm thì số lượng cá thể của loài B và D tăng.
IV. Khi loài A bị nhiễm độc thì loài H có khả năng bị nhiễm độc nặng nhất.
A. 3.
I. Đúng. Chuỗi thức ăn dài nhất có 5 bậc dinh dưỡng (ADCGH hoặc ADCEH).
II. Đúng. Lưới thức ăn trên có 8 chuỗi thức ăn gồm: ABEH, ACEH, ACH, ADGH, ADCH, ADCGH, ADCEH, ACGH.
III. Sai. Khi kích thước loài E giảm, thì kích thước loài B, C có thể tăng (do E sử dụng B, C làm nguồn thức ăn), mà kích thước loài C tăng thì có thể làm cho kích thước loài D giảm (do C sử dụng D làm nguồn thức ăn). Mặt khác, kích thước của loài trong quần xã thay đổi phụ thuộc vào nhiều yếu tố không chỉ riêng mối quan hệ dinh dưỡng.
IV. Đúng. Càng ở bậc dinh dưỡng cao thì lượng độc tố tích lũy càng nhiều → Khi loài A bị nhiễm độc thì loài H có khả năng bị nhiễm độc nặng nhất.
Chọn A.
Một xe khách đi từ Việt Trì về Hà Nội chở tối đa 60 hành khách một chuyến. Nếu một chuyến chở được \(m\) hành khách thì giá tiền cho mỗi hành khách được tính là \({\left( {30 - \frac{{5m}}{2}} \right)^2}\) đồng. Tính số hành khách trên mỗi chuyến xe để nhà xe thu được lợi nhuận của mỗi chuyến xe là lớn nhất.
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\left( {x + 1} \right)\left( {x - 3} \right) + \sqrt {8 + 2x - {x^2}} = 2m\) có nghiệm?
Trên mặt phẳng tọa độ \[Oxy,\] cho hình bình hành \[ABCD\] có phương trình đường thẳng \[AB\] là \(2x + y + 7 = 0\), phương trình đường thẳng \[AD\] là \(x - 4y - 1 = 0\) và giao điểm của hai đường chéo \[AC,\,\,BD\] là \[I\left( {1\,;\,\,2} \right).\] Phương trình của đường thẳng \[BC\] là
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(f\left( {{x^3} - 3x} \right) = m\) có 6 nghiệm thuộc đoạn \(\left[ { - 1\,;\,\,2} \right]?\)
Đồ thị nào dưới đây biểu diễn đúng sự biến đổi nồng độ các chất theo thời gian của phản ứng A + 2B → C?
Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là hình chữ nhật, \(AB = \sqrt 3 \,,\,\,BC = 1\) và các cạnh bên của hình chóp cùng bằng \(\sqrt 5 .\) Gọi \(M\) là trung điểm của \[SC.\] Tính khoảng cách từ \(M\) đến mặt phẳng \(\left( {ABCD} \right)\).
Cho một tấm nhôm hình vuông cạnh 1m như hình sau:
Người ta cắt phần tô đậm của tấm nhôm rồi gập thành một hình chóp tứ giác đều có cạnh đáy bằng x (m). Tìm giá trị của x để khối chóp nhận được có thể tích lớn nhất (kết quả làm tròn đến hàng phần trăm).
Cho sơ đồ sự phân li của \({\rm{NaCl}}\) trong môi trường \({{\rm{H}}_2}{\rm{O}}\):
Cho các phát biểu:
(a) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) có tương tác với các ion.
(b) \({{\rm{H}}_2}{\rm{O}}\) là một chất phân cực, nguyên tử \({\rm{H}}\) mang một phần điện tích âm, nguyên tử O mang một phần điện tích dương.
(c) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ kéo ion ra khỏi cấu trúc tinh thể \({\rm{NaCl}}\).
(d) Các phân tử \({{\rm{H}}_2}{\rm{O}}\) sẽ bao quanh các ion \({\rm{N}}{{\rm{a}}^ + }\)và \({\rm{C}}{{\rm{l}}^ - }.\)
Trong các phát biểu trên, số phát biểu đúng là
Trong không gian \[Oxyz,\] cho điểm \[A\left( {1\,;\,\,1\,;\,\, - 2} \right)\] và mặt phẳng \((P):2x + 2y + z + 1 = 0.\) Gọi \(M\) là điểm bất kì thuộc \((P)\), độ dài nhỏ nhất của đoạn thẳng \[AM\] là
Trên mặt phẳng tọa độ \[Oxy,\] giá trị của tham số \(m\) để đường thẳng \(\Delta :x - 2y + m = 0\) cắt elip \((E):\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1\) tại hai điểm phân biệt là
Trên mặt phẳng toạ độ \[Oxy,\] tập hợp biểu diễn số phức \(z\) thỏa mãn \[\left| {{{\left| z \right|}^2} - z\left( {\bar z + i} \right) - i} \right| = 3\] là đường tròn \((C).\) Khoảng cách từ tâm \(I\) của đường tròn \((C)\) đến trục tung bằng