Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(4) - {\rm{f}}( - 4)\) bằng
\(f(4) - f( - 4) = \int_{ - 4}^4 {{f^\prime }} (x)dx = \int_{ - 4}^1 {{f^\prime }} (x)dx + \int_1^4 {{f^\prime }} (x)dx = \frac{1}{2} \cdot 5 \cdot 3 + \frac{1}{2} \cdot 3 \cdot 3 = 12.\) Chọn A.
Cho hàm số \(y = f(x)\) liên tục trên \(\mathbb{R}\) có đồ thị cắt trục Ox tại đúng 4 điểm phân biệt (hình bên). Biết rằng \(\int_{ - 1}^1 {\rm{f}} ({\rm{x}}){\rm{dx}} = 21\), \(\int_1^2 f (x)dx = - 2,\int_2^3 f (x)dx = 3.\) Diện tích của hình phẳng giới hạn bởi đồ thị của hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) và trục Ox bằng
Hình phẳng giới hạn bởi đồ thị hàm số \({\rm{y}} = {{\rm{x}}^2}\) và đường thẳng \({\rm{y}} = 2{\rm{x}} + 3\) có diện tích là
Hình phẳng giới hạn bởi đồ thị hàm số \({\rm{y}} = {{\rm{e}}^{\rm{x}}}\) và các đường thẳng \({\rm{y}} = 1,{\rm{x}} = - 1\) có diện tích là
Cho hàm số \(y = f(x)\) thoả mãn hàm \(y = {f^\prime }(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình bên. Giá trị của biểu thức \({\rm{f}}(6) - {\rm{f}}(1)\) bằng
Hình vẽ bên biểu diễn trục hoành cắt đồ thị hàm số \({\rm{y}} = {\rm{f}}({\rm{x}})\) tại ba điểm có hoành độ \({{\rm{x}}_1},{{\rm{x}}_2},{{\rm{x}}_3}\) \(\left( {{x_1} < {x_2} < {x_3}} \right).\) Diện tích phần hình phẳng giới hạn bởi đồ thị hàm số \(y = f(x)\) và trục hoành là