Cho khối lập phương \({\rm{ABCD}} \cdot {{\rm{A}}^\prime }{{\rm{B}}^\prime }{{\rm{C}}^\prime }{{\rm{D}}^\prime }\) cạnh a. Thể tích của khối tứ diện \({\rm{AC}}{{\rm{B}}^\prime }{{\rm{D}}^\prime }\) là
Cho khối chóp đều \({\rm{S}}.{\rm{ABC}}\) có cạnh đáy bằng a , góc giữa đường thẳng SA và mặt phẳng \(({\rm{ABC}})\) bằng \({45^o }.\) Thể tích của khối chóp đều \({\rm{S}}.{\rm{ABC}}\) là
Cho khối hộp chữ nhật \({\rm{ABCD}} \cdot {{\rm{A}}^\prime }{{\rm{B}}^\prime }{{\rm{C}}^\prime }{{\rm{D}}^\prime }\) có \({\rm{AB}} = {\rm{a}},{\rm{AD}} = {\rm{b}},{\rm{A}}{{\rm{A}}^\prime } = {\rm{c}}.\) Thể tích của khối hộp chữ nhật \({\rm{ABCD}} \cdot {{\rm{A}}^\prime }{{\rm{B}}^\prime }{{\rm{C}}^\prime }{{\rm{D}}^\prime }\) là
Cho khối chóp \({\rm{S}}.{\rm{ABC}}\) có diện tích tam giác ABC bằng \({\rm{S}},{\rm{SA}} = {\rm{a}}\), góc giữa SA và \(({\rm{ABC}})\) là \(\varphi .\) Thể tích của khối chóp \({\rm{S}}.{\rm{ABC}}\) là
Cho khối lăng trụ \(ABCD \cdot {A^\prime }{B^\prime }{C^\prime }{D^\prime }\) có ABCD là hình vuông cạnh a, \({\rm{A}}{{\rm{A}}^\prime } = {\rm{b}}\), góc giữa \({\rm{A}}{{\rm{A}}^\prime }\) và \(({\rm{ABCD}})\) là \(\varphi .\) Thể tích của khối lăng trụ ABCD.A'B'C'D' là
Cho khối hộp \({\rm{ABCD}} \cdot {{\rm{A}}^\prime }{{\rm{B}}^\prime }{{\rm{C}}^\prime }{{\rm{D}}^\prime }.\) Tỉ số thể tích của khối tứ diện \({\rm{ABD}}{{\rm{A}}^\prime }\) và khối hộp \({\rm{ABCD}} \cdot {{\rm{A}}^\prime }{{\rm{B}}^\prime }{{\rm{C}}^\prime }{{\rm{D}}^\prime }\) là