Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

26/10/2024 15

Gọi \(M\)\(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \[y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2}\]. Giá trị của biểu thức \(3M - 2m\) bằng bao nhiêu?

Trả lời:

verified Giải bởi Vietjack

Đặt \[t = \cos x \in \left[ { - 1;\,\,1} \right]\], khi đó \(y = f\left( t \right) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}\).

Xét hàm số \[f\left( t \right) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}\] với \(t \in \left[ { - 1;\,1} \right]\).

Ta có: \[f'\left( t \right) = 8{t^2} - 9t + 3 = 8{\left( {t - \frac{9}{{16}}} \right)^2} + \frac{{15}}{{32}} > 0\,\,\forall t\].

Do đó, hàm số \[f\left( t \right)\] đồng biến trên \(\left[ { - 1;\,1} \right]\).

Suy ra \(M = \max y = \mathop {\max }\limits_{\left[ { - 1;\,1} \right]} f\left( t \right) = f\left( 1 \right) = 1\); \(m = \min y = \mathop {\min }\limits_{\left[ { - 1;\,1} \right]} f\left( t \right) = f\left( { - 1} \right) =  - 9\).

Vậy \(3M - 2m = 3 \cdot 1 - 2 \cdot \left( { - 9} \right) = 21\).

Đáp số: \(21\).

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp \(S.ABC\)\(\overrightarrow {SA}  = \overrightarrow a ,\,\,\overrightarrow {SB}  = \overrightarrow b ,\,\overrightarrow {SC}  = \overrightarrow c \) và các điểm \(M,\,N\) lần lượt là trung điểm của các cạnh \(AB,\,SC\). Các điểm \(P,\,Q\) nằm trên các đường thẳng \(SA,\,BN\) sao cho \(PQ\,{\rm{//}}\,CM\). Khi biểu diễn vectơ \(\overrightarrow {PQ} \) theo ba vectơ \(\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c \), ta được: \(\overrightarrow {PQ}  =  - \frac{m}{n}\overrightarrow a  - \frac{p}{q}\overrightarrow b  + \frac{r}{z}\overrightarrow c \) (với \(\frac{m}{n},\,\frac{p}{q},\,\frac{r}{z}\) là các phân số tối giản và \(m,n,p,q,r,z \in \mathbb{Z}\)). Giá trị của biểu thức \(\frac{m}{n} + \frac{p}{q} + \frac{r}{z}\) bằng bao nhiêu (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 26/10/2024 23

Câu 2:

Cho hình hộp \(ABCD.A'B'C'D'\).

Tổng \(\overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {AA'} \) bằng vectơ nào sau đây?

Xem đáp án » 26/10/2024 22

Câu 3:

Cho hình hộp \(ABCD.A'B'C'D'\) có tất cả các cạnh đều bằng \(a\)\(\widehat {ABC} = \widehat {A'AB} = \widehat {A'AD} = 60^\circ \). Khi đó:  

a) \(\left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {BC} } \right| = a\).

b) \(\overrightarrow {AA'}  \cdot \overrightarrow {AB}  = {a^2}\).

c) \(\left| {\overrightarrow {D'A'}  + \overrightarrow {D'C'} } \right| = a\sqrt 3 \).

d) \(\overrightarrow {AA'}  \cdot \overrightarrow {AC}  = {a^2}\).

Xem đáp án » 26/10/2024 21

Câu 4:

Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc \(120^\circ \) và có độ lớn lần lượt là \(15\) N và \(12\) N. Lực thức ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn \(9\) N. Độ lớn của hợp lực của ba lực trên bằng bao nhiêu Newton (làm tròn kết quả đến hàng phần mười)?

Xem đáp án » 26/10/2024 21

Câu 5:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau: 

Giá trị cực tiểu của hàm số đã cho là

Xem đáp án » 26/10/2024 20

Câu 6:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.

Phát biểu nào sau đây là đúng?

Xem đáp án » 26/10/2024 19

Câu 7:

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.

Tâm đối xứng của đồ thị hàm số có tọa độ là

Xem đáp án » 26/10/2024 19

Câu 8:

Cho hàm số \(y = f\left( x \right) = \frac{{{x^2} + 4x + 7}}{{x + 1}}\).

a) Hàm số đã cho nghịch biến trên từng khoảng \(\left( { - 3; - 1} \right)\)\(\left( { - 1;1} \right)\).

b) Giá trị cực tiểu của hàm số đã cho là \( - 2\).

c) Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x =  - 1\), tiệm cận xiên là đường thẳng \(y = x + 3\).

d) Đồ thị hàm số \(y = f\left( x \right)\) đi qua 6 điểm có tọa độ nguyên.

Xem đáp án » 26/10/2024 19

Câu 9:

PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho hàm số \[y = f\left( x \right)\] liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau: 

Câu 1. Hàm số đã cho đồng biến trên khoảng nào trong các khoảng dưới đây?

Xem đáp án » 26/10/2024 18

Câu 10:

Tiệm cận xiên của đồ thị hàm số \(y = x + 4 - \frac{{10}}{{x + 2}}\) là đường thẳng

Xem đáp án » 26/10/2024 18

Câu 11:

Cho hình lăng trụ tam giác \(ABC.A'B'C'\) (tham khảo hình vẽ). Khi đó:

a) \(\overrightarrow {BA}  + \overrightarrow {A'C'}  = \overrightarrow {BC} \).

b) \(\overrightarrow {AB}  + \overrightarrow {AA'}  + \overrightarrow {B'C'}  = \overrightarrow {AC'} \).

c) \(\left( {\overrightarrow {BC} ,\,\overrightarrow {AA'} } \right) = \left( {\overrightarrow {BC} ,\,\overrightarrow {BB'} } \right) = \left( {\overrightarrow {BC} ,\,\overrightarrow {CC'} } \right)\).

d) \(\overrightarrow {B'C}  \cdot \overrightarrow {BA}  = \left| {\overrightarrow {B'C} } \right| \cdot \left| {\overrightarrow {BA} } \right| \cdot \cos \widehat {A'CB'}\).

Xem đáp án » 26/10/2024 18

Câu 12:

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Honda Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu triệu đồng để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. 

Xem đáp án » 26/10/2024 18

Câu 13:

Để thiết kế một chiếc bể cá hình hộp chữ nhật có chiều cao là 60 cm, thể tích là 96 000 cm3, người thợ dùng loại kính để sử dụng làm mặt bên có giá thành 70 000 đồng/m2 và loại kính để làm mặt đáy có giá thành là 100 000 đồng/m2. Chi phí thấp nhất để hoàn thành bể cá là bao nhiêu nghìn đồng?

Xem đáp án » 26/10/2024 18

Câu 14:

Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 1;\,3} \right]\) và có đồ thị như hình dưới đây.

 

Phát biểu nào sau đây là đúng?

Xem đáp án » 26/10/2024 17

Câu 15:

Giá trị nhỏ nhất của hàm số \[y = \frac{{{x^2} + 3}}{{x - 1}}\] trên đoạn \(\left[ {2;\,\,4} \right]\) bằng

Xem đáp án » 26/10/2024 17

Câu hỏi mới nhất

Xem thêm »
Xem thêm »