Gọi \(S\) là tập hợp tất cả các nghiệm của phương trình \[x\left( {4x + 8} \right) - 16x - 32 = 0\]. Khẳng định nào sau đây là đúng?
A. \[S = \left\{ 4 \right\}.\]
B. \[S = \left\{ { - 2} \right\}.\]
C. \[S = \left\{ {4; - 2} \right\}.\]
D. \[S = \emptyset \,.\]
Đáp án đúng là: C
Giải phương trình:
\[x\left( {4x + 8} \right) - 16x - 32 = 0\]
\[x\left( {4x + 8} \right) - 4\left( {4x + 8} \right) = 0\]
\[\left( {x - 4} \right)\left( {4x + 8} \right) = 0\]
\[4\left( {x - 4} \right)\left( {x + 2} \right) = 0\]
\(x - 4 = 0\) hoặc \(x + 2 = 0\)
\(x = 4\) hoặc \(x = - 2\).
Vì vậy phương trình đã cho có hai nghiệm là \[x = 4\] và \[x = - 2,\] nên \[S = \left\{ {4; - 2} \right\}.\]
Vậy ta chọn phương án C.
Phương trình \(3\left( {x - 5} \right) - 2x\left( {5 - x} \right) = 0\) biến đổi về phương trình tích có dạng là
Điều kiện xác định của phương trình \(\frac{{x + 1}}{{x - 6}} + 3x = \frac{{x - 5}}{{{x^2} + 6}}\) là
Mẫu thức chung đơn giản nhất khi quy đồng mẫu thức hai vế của phương trình \(\frac{{x + 3}}{{x - 3}} + \frac{{2x - 1}}{{3 - x}} = 5\) là
Gọi \(S\) là tập hợp tất cả các nghiệm của phương trình \[ - 4\left( {x - 5} \right)\left( {9 - 3x} \right) = 0\]. Khẳng định nào sau đây là đúng?
Độ cao \[h\] (mét) của một quả bóng gôn sau khi được đánh \[t\] giây được cho bởi công thức \[h = t\left( {20 - 5t} \right).\] Sau bao lâu kể từ khi quả bóng được đánh đến khi chạm đất?
Bạn An sau khi thực hiện các bước giải phương trình \(\frac{{2x + 1}}{{x + 1}} + \frac{2}{x} = \frac{2}{{x\left( {x + 1} \right)}}\) nhận được kết quả là \(x = 0\) và \(x = - \frac{3}{2}.\) Khi đó, kết luận bạn An cần viết là
Điều kiện xác định của phương trình \[\frac{2}{{x + 3}} - \frac{{5x}}{{{x^3} + 27}} = \frac{{ - x}}{{{x^2} - 3x + 9}}\] là
Cho hai biểu thức \[A = \frac{3}{{3x + 1}} + \frac{2}{{1 - 3x}}\] và \[B = \frac{{x - 5}}{{9{x^2} - 1}}.\] Có bao nhiêu giá trị nào của \[x\] để hai biểu thức \[A\] và \[B\] có cùng một giá trị?
Một công nhân dự kiến làm \[33\] sản phẩm trong một thời gian nhất định. Trước khi thực hiện, xí nghiệp giao thêm cho công nhân đó \[29\] sản phẩm nữa. Do đó mặc dù mỗi giờ công nhân đó đã làm thêm \[3\] sản phẩm nhưng vẫn hoàn thành chậm hơn dự kiến \[1\] giờ \[30\] phút. Năng suất dự kiến của công nhân đó là
Phương trình \[\frac{{x + 6}}{{x + 5}} + \frac{3}{2} = 2\] có nghiệm là
Số nghiệm của phương trình \[\frac{2}{{x - 2}} - \frac{3}{{x - 3}} = \frac{{3x - 20}}{{\left( {x - 3} \right)\left( {x - 2} \right)}}\] là
Tổng các nghiệm của phương trình\[\frac{4}{{x - 1}} - \frac{5}{{x - 2}} = - 3\] là