Chọn khẳng định sai. Nếu \[a < b\] thì
A. \[5a - 6 < 5b - 6.\]
B. \[2a + 3 < 2b + 7.\]
C. \[8 - 7a < 8 - 7b.\]
D. \[11 - 4a > 9 - 4b.\]
Đáp án đúng là: C
⦁ Vì \[a < b\] nên \[5a < 5b.\]
Suy ra \[5a - 6 < 5b - 6.\]
Do đó phương án A là đúng.
⦁ Vì \[a < b\] nên \[2a < 2b.\]
Suy ra \[2a + 3 < 2b + 3.\]
Mà \[2b + 3 < 2b + 7\] nên \[2a + 3 < 2b + 7.\]
Do đó phương án B là đúng.
⦁ Vì \[a < b\] nên \[ - 7a > - 7b.\] </>
Suy ra \[8 - 7a > 8 - 7b.\]
Do đó phương án C là sai.
⦁ Vì \[a < b\] nên \[ - 4a > - 4b.\] </>
Suy ra \[9 - 4a > 9 - 4b.\]
Mà \(11 - 4a > 9 - 4a\) nên \(11 - 4a > 9 - 4b.\)
Do đó phương án D là đúng.
Vậy ta chọn phương án C.
</></></></></>
Giả sử \[t\] là số giờ làm việc tối thiểu của công nhân trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Số giờ làm việc tối thiểu của công nhân trong một ngày là 8 giờ” ta được
I. Nhận biết
Bất đẳng thức mô tả phát biểu “\[x\] là số không âm” là
Trong các cặp bất đẳng thức sau, cặp bất đẳng thức nào cùng chiều?
Cho các khẳng định sau với mọi \[x,y\] là số dương:
(I) \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 4.\]
(II) \[{x^2} + {y^3} \le 0.\]
(III) \[\frac{1}{x} + \frac{1}{y} > 0.\]
Có bao nhiêu khẳng định đúng?
Cho bất đẳng thức \[m > n.\] Chọn kết luận đúng trong các kết luận sau:
Cho \[x - 2 \ge y - 2.\] Bất đẳng thức thể hiện mối quan hệ giữa \(x\) và \(y\) là