Cho các số thực \[a,b,c\] tùy ý. Khẳng định nào sau đây là đúng?
A. \[3\left( {{a^2} + {b^2} + {c^2}} \right) > {\left( {a + b + c} \right)^2}.\]
B. \[3\left( {{a^2} + {b^2} + {c^2}} \right) < {\left( {a + b + c} \right)^2}.\]
</>
C. \[3\left( {{a^2} + {b^2} + {c^2}} \right) \ge {\left( {a + b + c} \right)^2}.\]
D. \[3\left( {{a^2} + {b^2} + {c^2}} \right) \le {\left( {a + b + c} \right)^2}.\]
Đáp án đúng là: C
Ta có: \[3\left( {{a^2} + {b^2} + {c^2}} \right) - {\left( {a + b + c} \right)^2}\]
\[ = 3{a^2} + 3{b^2} + 3{c^2} - \left( {{a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ac} \right)\]
\[ = 2{a^2} + 2{b^2} + 2{c^2} - 2ab - 2bc - 2ac\]
\[ = \left( {{a^2} - 2ab + {b^2}} \right) + \left( {{b^2} - 2bc + {c^2}} \right) + \left( {{a^2} - 2ac + {c^2}} \right)\]
\[ = {\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {a - c} \right)^2}\]
Với mọi số thực \[a,b,c\] tùy ý, ta có:
\[{\left( {a - b} \right)^2} \ge 0;\,\,\,{\left( {b - c} \right)^2} \ge 0;\,\,\,{\left( {a - c} \right)^2} \ge 0.\]
Do đó \[{\left( {a - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {a - c} \right)^2} \ge 0.\]
Vì vậy \[3\left( {{a^2} + {b^2} + {c^2}} \right) - {\left( {a + b + c} \right)^2} \ge 0\] hay \[3\left( {{a^2} + {b^2} + {c^2}} \right) \ge {\left( {a + b + c} \right)^2}.\]
Dấu “=” xảy ra khi và chỉ khi \[a = b = c.\]
Vậy ta chọn phương án C.
Giả sử \[t\] là số giờ làm việc tối thiểu của công nhân trong một ngày. Dùng kí hiệu để viết bất đẳng thức trong trường hợp: “Số giờ làm việc tối thiểu của công nhân trong một ngày là 8 giờ” ta được
I. Nhận biết
Bất đẳng thức mô tả phát biểu “\[x\] là số không âm” là
Trong các cặp bất đẳng thức sau, cặp bất đẳng thức nào cùng chiều?
Cho các khẳng định sau với mọi \[x,y\] là số dương:
(I) \[\left( {x + y} \right)\left( {\frac{1}{x} + \frac{1}{y}} \right) \ge 4.\]
(II) \[{x^2} + {y^3} \le 0.\]
(III) \[\frac{1}{x} + \frac{1}{y} > 0.\]
Có bao nhiêu khẳng định đúng?
Cho bất đẳng thức \[m > n.\] Chọn kết luận đúng trong các kết luận sau:
Cho \[x - 2 \ge y - 2.\] Bất đẳng thức thể hiện mối quan hệ giữa \(x\) và \(y\) là