Hai biểu thức \[P = \frac{{14}}{{3x - 12}} - \frac{{2 + x}}{{x - 4}}\,;\,\,\,Q = \frac{3}{{8 - 2x}} - \frac{5}{6}\] có giá trị bằng nhau khi
A. \(x = 13.\)
B. \(x = 4.\)
C. \(x = - 4.\)
D. \(x = - 13.\)
Đáp án đúng là: D
Điều kiện xác định: \(x \ne 4.\)
Theo đề bài, \(P = Q\) hay \(\frac{{14}}{{3x - 12}} - \frac{{2 + x}}{{x - 4}} = \frac{3}{{8 - 2x}} - \frac{5}{6}\)
\(\frac{{14}}{{3\left( {x - 4} \right)}} - \frac{{2 + x}}{{x - 4}} = \frac{3}{{2\left( {4 - x} \right)}} - \frac{5}{6}\)
\(\frac{{14 \cdot 4}}{{12\left( {x - 4} \right)}} - \frac{{12\left( {2 + x} \right)}}{{12\left( {x - 4} \right)}} = \frac{{ - 3 \cdot 6}}{{12\left( {x - 4} \right)}} - \frac{{5 \cdot 2\left( {x - 4} \right)}}{{12\left( {x - 4} \right)}}\)
\(\frac{{56 - 24 - 12x}}{{12\left( {x - 4} \right)}} = \frac{{ - 18 - 10x + 40}}{{12\left( {x - 4} \right)}}\)
\(32 - 12x = 58 - 10x\)
\(2x = - 26\)
\(x = - 13.\)
Vậy hai biểu thức đã cho có giá trị bằng nhau khi \(x = - 13.\)
Giá trị của \(x\) để biểu thức \[\frac{{2x - 9}}{{2x - 5}} + \frac{{3x}}{{3x - 2}}\] có giá trị bằng \(2\) là
II. Thông hiểu
Phương trình \[\frac{{x + 5}}{{{x^2} - 5x}} - \frac{{x + 25}}{{2{x^2} - 50}} = \frac{{x - 5}}{{2{x^2} + 10x}}\] có nghiệm là
Nghiệm lớn nhất của phương trình \(\left( {x + 3} \right)\left( {x + 4} \right) = 0\) là
I. Nhận biết
Cho một phương trình tích có dạng \(\left( {{a_1}x + {b_1}} \right)\left( {{a_2}x + {b_2}} \right) = 0\). Khi đó, kết luận nào sau đây là đúng?
Điều kiện xác định của phương trình \(\frac{1}{{x - 2}} + \frac{1}{x} = 3\) là
Cho phương trình \({\left( {{x^2} - 5x} \right)^2} + 10\left( {{x^2} - 5x} \right) + 24 = 0\). Khẳng định nào sau đây là đúng?
Mẫu thức chung của phương trình \(\frac{3}{{x - 2}} + \frac{1}{{x + 1}} = 0\) là:
Tập nghiệm của phương trình \(\left( {{x^2} - 9} \right)\left( {4 - x} \right) = 0\) là
Số nghiệm của phương trình \(2x\left( {4x - 1} \right) = \left( {4x - 1} \right)\)là
III. Vận dụng
Tổng các nghiệm của phương trình \(\left( {x + 2} \right)\left( {x + 3} \right)\left( {x - 5} \right)\left( {x - 6} \right) = 180\) là
Hai nghiệm của phương trình \(3\left( {x - 5} \right)\left( {x + 2} \right) = {x^2} - 5x\) có tổng là