Cho phương trình \(3{x^2} + 6x + 9 = 0\). Kết luận nào sau đây đúng?
A. \(\Delta = 72\) và phương trình có hai nghiệm phân biệt.
B. \(\Delta = - 72\) và phương trình có hai nghiệm phân biệt.
C. \(\Delta = 0\) và phương trình có nghiệm kép.
D. \(\Delta = - 72\) và phương trình vô nghiệm.
Đáp án đúng là: B
Phương trình \(3{x^2} + 6x + 9 = 0\) có \(\Delta = {6^2} - 4.3.9 = - 72 < 0\).
Suy ra phương trình vô nghiệm.
>Một công nhân dự định làm \(70\) sản phẩm trong thời gian quy định. Nhưng do áp dụng kĩ thuật nên đã tăng năng suất thêm \(5\) sản phẩm mỗi giờ. Do đó, không những hoàn thành kế hoạch trước thời hạn \(40\) phút mà còn làm thêm được \(10\) sản phẩm so với dự định. Hỏi năng suất dự định là bao nhiêu?
Tích các nghiệm của phương trình \(\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 5} \right)\left( {x + 6} \right) = 504\) là
Giá trị của tham số \(m\) để phương trình \({x^2} - 2\left( {m + 1} \right)x + {m^2} - 3 = 0\) vô nghiệm là
I. Nhận biết
Phương trình nào dưới đây là phương trình bậc hai một ẩn?
Cho hai phương trình sau đây: \({x^2} - 6x + 8 = 0\,\,\,\left( 1 \right)\,;\,\,{x^2} + 2x - 3 = 0\,\,\,\left( 2 \right)\,.\) Khẳng định nào sau đây đúng.
Cho phương trình \(a{x^2} + bx + c = 0\,\,\left( {a \ne 0} \right)\) có biệt thức \(\Delta = {b^2} - 4ac.\) Phương trình đã cho có nghiệm khi
Giả sử \({x_1};\,\,{x_2}\) là hai nghiệm của phương trình bậc hai \[a{x^2} + bx + c = 0\] có \(\Delta ' > 0.\) Khẳng định nào say đây là đúng?