Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

29/12/2024 5

Cho đường tròn \[\left( {O;R} \right)\] và dây \[AB = 1,2R.\] Vẽ một tiếp tuyến song song với \[AB,\] cắt các tia \[OA,OB\] lần lượt tại \[E\] và \[F.\] Diện tích tam giác \[OEF\] theo \[R\] là

A. \[{S_{OEF}} = 0,75{R^2}.\]

Đáp án chính xác

B. \[{S_{OEF}} = 0,8{R^2}.\]

C. \[{S_{OEF}} = 1,5{R^2}.\]

D. \[{S_{OEF}} = 1,75{R^2}.\]

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Cho đường tròn  ( O ; R )  và dây  A B = 1 , 2 R .  Vẽ một tiếp tuyến song song với  A B ,  cắt các tia  O A , O B  lần lượt tại  E  và  F .  Diện tích tam giác  O E F  theo  R  là (ảnh 1)

Giả sử tiếp tuyến \[EF\] tiếp xúc với đường tròn \[\left( O \right)\] tại \[H.\] Khi đó \[OH \bot EF.\]

Gọi \[I\] là giao điểm của \[OH\] và \[AB.\]

Vì \[EF\,{\rm{//}}\,AB\] nên \[OH \bot AB.\]

Vì tam giác \[OAB\] cân tại \[O\] (do \[OA = OB = R\]) nên \[OI\] vừa là đường cao, vừa là đường trung tuyến của tam giác. Do đó \[I\] là trung điểm \[AB.\]

Vì vậy \[IA = IB = \frac{{AB}}{2} = \frac{{1,2R}}{2} = 0,6R.\]

Áp dụng định lí Pythagore cho tam giác \[OAI\] vuông tại \[I,\] ta được: \[O{A^2} = O{I^2} + A{I^2}.\]

Suy ra \[O{I^2} = O{A^2} - A{I^2} = {R^2} - {\left( {0,6R} \right)^2} = 0,64{R^2}.\]

Do đó \[OI = 0,8R.\]

Vì \[AI\,{\rm{//}}\,EH\] nên áp dụng định lí Thales, ta có \[\frac{{AI}}{{EH}} = \frac{{OI}}{{OH}}.\]

Suy ra \[\frac{{0,6R}}{{EH}} = \frac{{0,8R}}{R}.\]

Do đó \[EH = 0,75R.\]

Vì \[AB\,{\rm{//}}\,EF\] nên \[\widehat {OAB} = \widehat {OEF}\] (cặp góc đồng vị).

Chứng minh tương tự, ta được \[\widehat {OBA} = \widehat {OFE}.\]

Mà \[\widehat {OBA} = \widehat {OAB}\] (do tam giác \[OAB\] cân tại \[O\]).

Do đó \[\widehat {OEF} = \widehat {OFE}.\] Vì vậy tam giác \[OEF\] cân tại \[O.\]

Tam giác \[OEF\] cân tại \[O\] có \[OH\] là đường cao nên \[OH\] cũng là đường trung tuyến của tam giác.

Do đó \[H\] là trung điểm \[EF.\]

Vì vậy \[EF = 2EH = 2 \cdot 0,75R = 1,5R.\]

Diện tích tam giác \[OEF\] là: \[{S_{OEF}} = \frac{1}{2} \cdot OH \cdot EF = \frac{1}{2} \cdot R \cdot 1,5R = 0,75{R^2}.\]

Vậy ta chọn phương án A.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hai tiếp tuyến tại \[A\] và \[B\] của đường tròn \[\left( O \right)\] cắt nhau tại \[I.\] Đường thẳng qua \[I\] vuông góc với \[IA\] cắt \[OB\] tại \[K.\] Khẳng định nào sau đây là đúng?

Xem đáp án » 29/12/2024 8

Câu 2:

I. Nhận biết

Đường thẳng và đường tròn có nhiều nhất bao nhiêu điểm chung?

Xem đáp án » 29/12/2024 5

Câu 3:

II. Thông hiểu

Cho \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[3{\rm{\;cm}}.\] Lấy điểm \[I\] trên \[a\] và vẽ đường tròn \[\left( {I;3,5{\rm{\;cm}}} \right).\] Khi đó đường tròn \[\left( I \right)\] với đường thẳng \[b\]

Xem đáp án » 29/12/2024 5

Câu 4:

Cho đường tròn \[\left( {O;5{\rm{\;cm}}} \right)\] và một điểm \[A\] nằm ngoài \[\left( O \right).\] Qua \[A,\] kẻ đường thẳng cắt đường tròn \[\left( O \right)\] tại hai điểm \[B\] và \[C\] (điểm \[B\] nằm giữa hai điểm \[A\] và \[C)\] sao cho \[AB = BC.\] Vẽ đường kính \[CD\] của đường tròn \[\left( O \right).\] Khi đó độ dài đoạn \[AD\] bằng

Xem đáp án » 29/12/2024 5

Câu 5:

Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH < R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\]

Xem đáp án » 29/12/2024 4

Câu 6:

Cho hai tiếp tuyến của một đường tròn cắt nhau tại một điểm. Khẳng định nào sau đây là đúng?

Xem đáp án » 29/12/2024 4

Câu 7:

Hai tiếp tuyến tại \(B\) và \(C\) của đường tròn \(\left( O \right)\) cắt nhau tại \(A.\) Biết \(OB = 3{\rm{\;cm}},\,\,OA = 5{\rm{\;cm}}{\rm{.}}\) Khẳng định nào sau đây là sai?

Xem đáp án » 29/12/2024 4

Câu 8:

Cho đường tròn \[\left( O \right),\] bán kính \[R = OA,\] dây \[CD\] là đường trung trực của \[OA.\] Kẻ tiếp tuyến với đường tròn tại \[C,\] tiếp tuyến này cắt đường thẳng \[OA\] tại \[I.\] Cho các khẳng định sau:

(i) Tứ giác \[CODA\] là hình thoi.

(ii) \[CI = R\sqrt 3 .\]

Kết luận nào sau đây đúng nhất?

Xem đáp án » 29/12/2024 4

Câu 9:

Cho đường tròn \[\left( O \right),\] từ một điểm \[M\] ở ngoài \[\left( O \right),\] vẽ hai tiếp tuyến \[MA\] và \[MB\] sao cho \[\widehat {AMB}\] bằng \[120^\circ .\] Biết chu vi tam giác \[MAB\] là \[6\left( {3 + 2\sqrt 3 } \right){\rm{\;cm}}.\] Khi đó độ dài dây \[AB\] bằng

Xem đáp án » 29/12/2024 4

Câu 10:

Nếu đường thẳng và đường tròn có duy nhất một điểm chung thì

Xem đáp án » 29/12/2024 3

Câu 11:

Cho đường tròn \[\left( O \right)\] và đường thẳng \[a.\] Kẻ \[OH \bot a\] tại điểm \[H,\] biết \[OH > R.\] Khi đó, đường thẳng \[a\] và đường tròn \[\left( O \right)\] có vị trí tương đối là

Xem đáp án » 29/12/2024 3

Câu 12:

Cho \[a\] và \[b\] là hai đường thẳng song song và cách nhau một khoảng bằng \[2,5{\rm{\;cm}}.\] Lấy điểm \[I\] trên \[a\] và vẽ đường tròn \[\left( {I;2,5{\rm{\;cm}}} \right).\] Khi đó đường tròn \[\left( I \right)\] với đường thẳng \[b\]

Xem đáp án » 29/12/2024 3

Câu 13:

Cho đường tròn tâm \[O\] bán kính \[4{\rm{\;cm}}\] và một điểm \[A\] cách \[O\] là \[7{\rm{\;cm}}.\] Kẻ tiếp tuyến \[AB\] với đường tròn (điểm \[B\] là tiếp điểm). Khi đó độ dài \[AB\] là

Xem đáp án » 29/12/2024 3

Câu 14:

III. Vận dụng

Cho đường tròn \[\left( {O;R} \right)\] và điểm \[A\] nằm ngoài \[\left( O \right).\] Từ \[A\] kẻ hai tiếp tuyến \[AB,AC\] với đường tròn \[\left( O \right)\] (hai điểm \[B,C\] là các tiếp điểm). Gọi \[H\] là giao điểm của \[OA\] và \[BC.\] Lấy \[D\] đối xứng với \[B\] qua \[O.\] Gọi \[E\] là giao điểm của đoạn thẳng \[AD\] với đường tròn \[\left( O \right)\] (điểm \[E\] khác điểm \[D\]) . Tỉ số \[\frac{{DE}}{{BE}}\] bằng

Xem đáp án » 29/12/2024 3

Câu hỏi mới nhất

Xem thêm »
Xem thêm »