Người ta cần xây dựng một khung cổng hình chữ nhật rộng 4 m và cao 3 m, bên ngoài khung cổng được bao bởi một khung thép dạng nửa hình tròn (như hình vẽ).
Chiều dài của đoạn thép dùng để làm khung nửa đường tròn đó là bao nhiêu? (làm tròn kết quả đến hàng phần trăm).
A. \[11,66\,\,{\rm{cm}}.\]
B. \[11,33\,\,{\rm{cm}}.\]
C. \[12,05\,\,{\rm{cm}}.\]
D. \[11,26\,\,{\rm{cm}}.\]
Đáp án đúng là: B
Gọi \[ABCD\] là khung cổng hình chữ nhật.
Vẽ hình chữ nhật \[ABEF\] (hình vẽ) và \[O\] là giao điểm của hai đường chéo \[AE,{\rm{ }}BF.\]
Khi đó ta có \[AF = 2AD = 2 \cdot 3 = 6{\rm{ }}\left( {\rm{m}} \right){\rm{.}}\]
Tam giác \[ABF\] vuông tại A, theo định lí Pythagore, ta có:
\[B{F^2} = A{F^2} + A{B^2} = {6^2} + {4^2} = 52.\]
Do đó \[BF = \sqrt {52} = 2\sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]
Vì vậy bán kính đường tròn ngoại tiếp hình chữ nhật \[ABEF\] là: \[R = \frac{{BF}}{2} = \sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]
Chu vi đường tròn ngoại tiếp hình chữ nhật \[ABEF\] là: \[C = 2\pi R = 2\pi \sqrt {13} \,\,\left( {{\rm{cm}}} \right).\]
Vậy chiều dài của đoạn thép dùng để làm khung nửa đường tròn là \[\frac{C}{2} = \frac{{2\pi \sqrt {13} }}{2} \approx 11,33\,\,\left( {{\rm{cm}}} \right).\]
Cho các hình vẽ sau:
Trong các hình trên, hình nào đang nội tiếp đường tròn?
Tứ giác \[ABCD\] nội tiếp đường tròn có hai cạnh đối \[AB\] và \[CD\] cắt nhau tại \[M\] và \(\widehat {BAD} = 70^\circ \). Số đo \(\widehat {BCM}\) là
II. Thông hiểu
Khi tứ giác \[MNPQ\] nội tiếp đường tròn, và có \(\widehat M = 90^\circ \). Khi đó, góc \[P\] bằng
Cho tam giác \[MNP\] đều cạnh bằng \[\sqrt 3 \] dm. Khi đó bán kính \[R\] của đường tròn ngoại tiếp và bán kính \[r\] của đường tròn nội tiếp tam giác đều \[MNP\] lần lượt bằng
Cho tứ giác \[ABCD\] nội tiếp một đường tròn \[\left( O \right)\]. Biết \(\widehat {BOD} = 140^\circ \). Số đo góc \(\widehat {BCD}\) là
Cho hình vẽ bên dưới.
Giá trị của \[x\] và số đo \[\widehat {ADC}\] lần lượt bằng
Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( {O;{\rm{ }}R} \right).\] Biết rằng \[\widehat {ABC} = 70^\circ ;\,\,\widehat {ODC} = 50^\circ .\] Số đo \[\widehat {AOD}\] là
III. Vận dụng
Người ta làm một khung gỗ hình tam giác đều đặt vừa khít một chiếc đồng hồ hình tròn có đường kính \[40{\rm{ cm}}.\]
Độ dài các cạnh (phía bên trong) của khung gỗ phải bằng bao nhiêu (làm tròn kết quả đến hàng phần trăm)?
Cho tứ giác \[ABCD\] nội tiếp đường tròn \[\left( O \right)\] sao cho tam giác \[ABC\] nhọn. Hai đường cao \[AM,{\rm{ }}CN\] của tam giác \[ABC\] cắt nhau tại \[H.\] Khẳng định nào sau đây là đúng?