Chủ nhật, 03/11/2024
IMG-LOGO

Câu hỏi:

30/06/2024 137

Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24g hương liệu, 9 lít nước và 210g đường để pha chế nước cam và nước táo. Để pha chế 1 lít nước cam cần 30g đường, 1 lít nước và 1g hương liệu; còn để pha chế 1 lít nước táo, cần 10g đường, 1 lít nước và 4g hương liệu. Mỗi lít nước cam nhận được 60 điểm và mỗi lít nước táo nhận được 80 điểm. Gọi x, y lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế sao cho tổng điểm đạt được là lớn nhất. Tính T=2x2+y2

A. 43

B. 66

C. 57

Đáp án chính xác

D. 88

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án C

Phương pháp

- Lập hệ bất phương trình ẩn x, y dựa vào điều kiện đề bài.

- Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ.

- Tìm x, y để biểu thức tính số điểm M(x;y) đạt GTLN (tại một trong các điểm mút).

Cách giải

Gọi x, y lần lượt là số lít nước cam và nước táo mà mỗi đội cần pha chế (x≥0;y≥0)

Để pha chế x lít nước cam thì cần 30x (g) đường, x lít nước và x (g) hương liệu.

Để pha chế y lít nước táo thì cần 10y (g) đường, y lít nước và 4y (g) hương liệu.

Theo bài ra ta có hệ bất phương trình:

Số điểm đạt được khi pha x lít nước cam và y lít nước táo là: M(x;y)=60x+80y.

Bài toán trở thành tìm x, t thỏa để M(x;y) đạt GTLN.

Ta biểu diễn miền nghiệm của (*) trên mặt phẳng tọa độ như sau:

Miền nghiệm là ngũ giác ACJIH

Tọa độ các giao điểm A(4;5),C(6;3),J(7;0),I(0;0),H(0;6).

M(x;y) sẽ đạt max, min tại các điểm đầu mút nên thay tọa độ từng giao điểm vào tính M(x;y) ta được:

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Ông A dự định sử dụng hết 5m2 kính để làm bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có thể tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)

Xem đáp án » 18/06/2021 2,455

Câu 2:

Có bao nhiêu giá trị nguyên của tham số m để đồ thị của hàm số y=x3+(m+2)x2+(m2-m-3)x-m2 cắt trục hoành tại ba điểm phân biệt

Xem đáp án » 18/06/2021 1,373

Câu 3:

Biết 12x3dxx2+1-1=a5+b2+c với a, b, c là các số hữu tỉ. Tính P=a+b+c

Xem đáp án » 18/06/2021 969

Câu 4:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, BC=2a, SA vuông góc với mặt phẳng đáy và SA=2a3 . Gọi M là trung điểm của AC. Khoảng cách giữa hai đường thẳng ABSM bằng

Xem đáp án » 18/06/2021 936

Câu 5:

Cho x, y là các số thực thỏa mãn log4(x+y)+log4(x-y)1. Tìm giá trị nhỏ nhất của biểu thức P=2x-y

Xem đáp án » 18/06/2021 573

Câu 6:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y+2z-2=0 và điểm I(-1;2;-1). Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5

Xem đáp án » 18/06/2021 357

Câu 7:

Cho hình H là đa giác đều có 24 đỉnh. Chọn ngẫu nhiên 4 đỉnh của H. Tính xác suất sao cho 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.

Xem đáp án » 18/06/2021 355

Câu 8:

Cho hàm số y=f(x). Đồ thị hàm số y=f’(x) như hình vẽ. Đặt g(x)=3f(x)-x3+3x-m, với m là tham số thực. Điều kiện cần và đủ để bất phương trình g(x)≥0 nghiệm đúng với x-3;3

Xem đáp án » 18/06/2021 319

Câu 9:

Cho một hình trụ có chiều cao bằng 2 và bán kính đáy bằng 3. Thể tích khối trụ đã cho bằng

Xem đáp án » 18/06/2021 286

Câu 10:

Cho hai hàm số y= logax, y=logbx (với a, b là hai số thực dương khác 1) có đồ thị lần lượt là (C1), (C2) như hình vẽ. Khẳng định nào sau đây đúng?

Xem đáp án » 18/06/2021 265

Câu 11:

Gọi S là tập hợp các giá trị thực của tham số m sao cho phương trình x9+3x3-9x=m+39x+m3 có đúng hai nghiệm thực. Tính tổng các phần tử của S

Xem đáp án » 18/06/2021 263

Câu 12:

Cho đồ thị y=f(x) như hình vẽ sau đây. Biết rằng -21f(x)dx=a và 12f(x)dx=b. Tính diện tích S của phần hình phẳng được tô đậm

Xem đáp án » 18/06/2021 262

Câu 13:

Trong không gian Oxyz, cho hai mặt phẳng (P): x+2y-2z-6=0 và (Q): x+2y-2z+3=0. Khoảng cách giữa hai mặt phẳng (P) và (Q) bằng

Xem đáp án » 18/06/2021 259

Câu 14:

Thể tích khối lăng trụ có diện tích đáy là B và chiều cao h được tính bởi công thức

Xem đáp án » 18/06/2021 255

Câu 15:

Một người lần đầu gửi vào ngân hàng 100 triệu đồng với kì hạn theo quý (3 tháng), lãi suất 2% một quý. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi quý số tiền lãi sẽ được nhập vào gốc để tính lãi cho quý tiếp theo. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó. Tổng số tiền người đó nhận được 1 năm sau khi gửi tiền (cả vốn lẫn lãi) gần nhất với kết quả nào sau đây

Xem đáp án » 18/06/2021 252

Câu hỏi mới nhất

Xem thêm »
Xem thêm »