Kết luận nào sau đây sai khi nói về đồ thị hàm số y = a với a 0
A. Đồ thị hàm số nhận trục tung làm trục đối xứng.
B. Với a > 0 đồ thị nằm phía trên trục hoành và O là điểm cao nhất của đồ thị
C. Với a < 0 đồ thị nằm phía dưới trục hoành và O là điểm cao nhất của đồ thị
D. Với a > 0 đồ thị nằm phía trên trục hoành và O là điểm thấp nhất của đồ thị
Đáp án B
Đồ thị hàm số là một parabol đi qua gốc tọa độ O, nhận Oy làm trục đối xứng (O là đỉnh của parabol).
• Nếu a > 0 thì đồ thị nằm phía trên trục hoành, O là điểm thấp nhất của đồ thị
• Nếu a < 0 thì đồ thị nằm phía dưới trục hoành, O là điểm cao nhất của đồ thị
Cho hàm số y = f(x) = (-2m + 1) . Tính giá trị của m để đồ thị đi qua điểm A(-2; 4)
Cho các hàm số:
(1): y = 3
(2): y = - 4
(3) y = 3x
(4): y = - 4x .
Hỏi có bao nhiều hàm số đồng biến với x < 0?
Cho parabol (P): và đường thẳng (d): y = −4x – 4. Số giao điểm của đường thẳng d và parabol (P) là:
Cho đồ thị hàm số (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình có hai nghiệm phân biệt.
Cho parabol (P):và đường thẳng (d): y = 2x + 2. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 4. Tìm hoành độ giao điểm còn lại của d và parabol (P)
Trong các điểm: A (1; 2); B (−1; −1); C (10; −200); D có bao nhiêu điểm thuộc đồ thị hàm số (P)
Cho đồ thị hàm số(P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình có hai nghiệm phân biệt
Cho parabol (P): và đường thẳng (d): y = x + 1. Số giao điểm của đường thẳng d và parabol (P) là