Cho đồ thị hàm số(P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình có hai nghiệm phân biệt
A. m > 2
B. m > 0
C. m < 2
D. m > −2
Xét phương trình x2 – 2m + 4 = 0 (*)
x2 = 2m – 4
Số nghiệm của phương trình (*) là
số giao điểm của parabol (P):
và đường thẳng d: y = m – 2
Để (*) có hai nghiệm phân biệt thì d cắt (P) tại hai điểm phân biệt
Từ đồ thị hàm số ta thấy:
Với m – 2 > 0m > 2 thì d cắt (P)
tại hai điểm phân biệt hay phương trình (*)
có hai nghiệm phân biệt khi m > 2
Đáp án cần chọn là: A
Cho hàm số y = f(x) = (-2m + 1) . Tính giá trị của m để đồ thị đi qua điểm A(-2; 4)
Cho các hàm số:
(1): y = 3
(2): y = - 4
(3) y = 3x
(4): y = - 4x .
Hỏi có bao nhiều hàm số đồng biến với x < 0?
Cho parabol (P): và đường thẳng (d): y = −4x – 4. Số giao điểm của đường thẳng d và parabol (P) là:
Cho đồ thị hàm số (P) như hình vẽ. Dựa vào đồ thị, tìm m để phương trình có hai nghiệm phân biệt.
Cho parabol (P):và đường thẳng (d): y = 2x + 2. Biết đường thẳng d cắt (P) tại một điểm có tung độ y = 4. Tìm hoành độ giao điểm còn lại của d và parabol (P)
Cho các hàm số y = 2 và y = . Hỏi hàm số nào đồng biến khi x > 0
Trong các điểm: A (1; 2); B (−1; −1); C (10; −200); D có bao nhiêu điểm thuộc đồ thị hàm số (P)
Cho parabol (P): và đường thẳng (d): y = x + 1. Số giao điểm của đường thẳng d và parabol (P) là