Cho hàm số
Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng
B. Hàm số đồng biến trên khoảng
C. Hàm số đồng biến trên khoảng
D. Hàm số nghịch biến trên khoảng
Đáp án A
Ta có:
nên hàm số đồng biến trên mỗi khoảng và .
Do đó hàm số đồng biến trên khoảng
Gọi M là giao điểm của đồ thị hàm số với trục Oy. Phương trình tiếp tuyến với đồ thị trên tại điểm M là:
Cho hàm số với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên các khoảng xác định. Tìm số phần tử của S.
Cho hàm số có đồ thị và đường thẳng . Tìm số các giá trị của m để d cắt tại 3 điểm phân biệt có hoành độ tại thỏa mãn
Hỏi có bao nhiêu giá trị m nguyên trong đoạn để hàm số đồng biến trên khoảng ?
Gọi M, N là các điểm cực tiểu của đồ thị hàm số . Độ dài đoạn thẳng MN bằng:
Thể tích của khối lăng trụ tứ giác đều là Diện tích toàn phần nhỏ nhất của hình lăng trụ là
Cho hàm số đồ thị là và . Gọi h là khoảng cách từ điểm A đến đường thẳng đi qua điểm cực đại, cực tiểu của . Giá trị lớn nhất của h bằng
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Tìm tất cả các giá trị của để phương trình f(x)=m có 3 nghiệm phân biệt