Cho hình lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác cân ,AB=Aa; mặt phẳng (AB'C') tạo với đáy góc . Thể tích của lăng trụ đã cho là:
A.
B.
C.
D.
Đáp án B
Ta có: Gọi H là trung điểm của B'C'
Tam giác ABC cân tại A nên
Góc mặt phẳng (AB'C') tạo với đáy là
Do đó:
Gọi M là giao điểm của đồ thị hàm số với trục Oy. Phương trình tiếp tuyến với đồ thị trên tại điểm M là:
Cho hàm số với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của m để hàm số nghịch biến trên các khoảng xác định. Tìm số phần tử của S.
Cho hàm số có đồ thị và đường thẳng . Tìm số các giá trị của m để d cắt tại 3 điểm phân biệt có hoành độ tại thỏa mãn
Hỏi có bao nhiêu giá trị m nguyên trong đoạn để hàm số đồng biến trên khoảng ?
Gọi M, N là các điểm cực tiểu của đồ thị hàm số . Độ dài đoạn thẳng MN bằng:
Thể tích của khối lăng trụ tứ giác đều là Diện tích toàn phần nhỏ nhất của hình lăng trụ là
Cho hàm số đồ thị là và . Gọi h là khoảng cách từ điểm A đến đường thẳng đi qua điểm cực đại, cực tiểu của . Giá trị lớn nhất của h bằng
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
Tìm tất cả các giá trị của để phương trình f(x)=m có 3 nghiệm phân biệt