Cho hình thoi ABCD tâm O, cạnh 2a. Góc . Tính độ dài vectơ
A. || =
B. || =
C. || =
D. || =
Chọn A
Tam giác ABD cân tại A do ABCD là hình thoi và có góc nên tam giác ABD đều
Áp dụng quy tắc hình bình hành ta có:
=> || = || = AC = 2.AO
Trong đó O là tâm của hình thoi
Ta tính AO: Tam giác ABD đều nên AO đồng thời là đường cao và:
=> AO = AB.sin = 2a.sin =
=> = 2.AO =
Cho tam giác ABC với G là trọng tâm. Đặt ; . Khi đó, được biểu diễn theo hai vectơ a và b là:
Phủ định của mệnh đề “ Có ít nhất một số vô tỷ là số thập phân vô hạn tuần hoàn ” là mệnh đề nào sau đây :
Cho hình vuông ABCD cạnh bằng 2. Điểm M nằm trên đoạn thẳng AC sao cho AM = . Gọi N là trung điểm của đoạn thẳng DC. Tính
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [–5; 5] để phương trình:| mx + 2x – 1|= | x – 1| có đúng hai nghiệm phân biệt?
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1;2); B(–2;0) và C(1; –3) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác đã cho
Cho hai tập hợp A ={2,4,6,9} và B = {1,2,3,4}.Tập hợp A\ B bằng tập nào sau đây?
Cho hai góc α và β với α+ β = . Tính giá trị của biểu thức: P = cosα.cosβ sinα.sinβ
Có bao nhiêu giá trị nguyên của tham số m thuộc [–5; 5] để phương trình có hai nghiệm âm phân biệt?
Cho hình vẽ với M,N,P lần lượt là trung điểm của AB,AC, BC. Khẳng định nào sau đây đúng?
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(–3;0); B(3;0) và C(2;6). Gọi H(a;b) là tọa độ trực tâm của tam giác đã cho. Tính a + 6b