Cho hàm số y = ax2 + bx + c (a > 0). Khẳng định nào sau đây là sai?
A. Hàm số đồng biến trên khoảng (− ; +∞).
B. Hàm số nghịch biến trên khoảng (−∞;− ).
C.Đồ thị của hàm số có trục đối xứng là đường thẳng x =−.
D.Đồ thị của hàm số luôn cắt trục hoành tại hai điểm phân biệt
Ví dụ trường hợp đồ thị có đỉnh nằm phía trên trục hoành thì khi đó đồ thị hàm số không cắt trục hoành.
(Hoặc xét phương trình hoành độ giao điểm ax2 + bx + c = 0, phương trình này không phải lúc nào cũng có hai nghiệm).
Đáp án cần chọn là: D
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị nhỏ nhất bằng 4 tại x = 2 và có đồ thị hàm số đi qua điểm A (0; 6). Tính tích P = abc.
Cho hàm số y = ax2 + bx + c có đồ thị như hình bên.
Khẳng định nào sau đây đúng ?
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị lớn nhất bằng 5 tại x = − 2 và có đồ thị đi qua điểm M (1; −1). Tính tổng S = a2 + b2 + c2.
Cho hàm số f(x) = ax2 + bx + c đồ thị như hình. Hỏi với những giá trị nào của tham số thực m thì phương trình |f(x)| = m có đúng 4 nghiệm phân biệt.
Nếu hàm số y = ax2 + bx + c có a < 0, b > 0 và c > 0 thì đồ thị của nó có dạng
Cho hàm số y = ax2 + bx + c có đồ thị (P) như hình vẽ.
Khẳng định nào sau đây là sai?
Tìm giá trị của m để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ dương
Viết phương trình của Parabol (P) biết rằng (P) đi qua các điểm A (0; 2),
B (-2; 5), C (3; 8)
Tìm giá trị của m để hàm số y = −x2 + 2x + m − 5 đạt giá trị lớn nhất bằng 6
Tìm các giá trị thực của tham số m để phương trình |x2 − 3x + 2| = m có bốn nghiệm thực phân biệt.