Tìm tất cả các giá trị thực của tham số b để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt
A.
B.
C.
D.
Xét phương trình hoành độ giao điểm: −3x2 + bx – 3 = 0. (1)
Để đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khi và chỉ khi (1) có 2 nghiệm phân biệt ⇔ Δ = b2 – 36 > 0 ⇔
Đáp án cần chọn là: A
Biết rằng hàm số y = ax2 + bx + c (a ≠ 0) đạt giá trị lớn nhất bằng 3 tại x = 2 và có đồ thị hàm số đi qua điểm A (0; −1). Tính tổng S = a + b + c.
Xác định Parabol (P): biết rằng Parabol đi qua điểm A (3; -4) và có trục đối xứng
Xác định parabol (P): y = ax2 + bx + c, biết rằng (P) đi qua ba điểm A (1; 1), B(−1; −3) và O (0; 0).
Cho parabol (P): y = ax2 + bx + 2 biết rằng parabol đó cắt trục hoành tại hai điểm lần lượt có hoành độ x1 = 1 và x2 = 2. Parabol đó là:
Tìm giá trị thực của tham số m để parabol (P): y = mx2 − 2mx − 3m − 2 (m ≠ 0) có đỉnh thuộc đường thẳng y = 3x − 1.
Xác định parabol (P): y = ax2 + bx + 2, biết rằng (P) đi qua hai điểm M (1; 5) và N (−2; 8).
Tìm tất cả các giá trị thực của m để phương trình −2x2 − 4x + 3 = m có nghiệm.
Xác định Parabol (P): y = ax2 + bx + 2 biết rằng Parabol đi qua hai điểm M (1; 5) và N (2; −2).
Cho hàm số y = -3x2 – 2x + 5. Đồ thị hàm số này có thể được suy ra từ đồ thị hàm số y = -3x2 bằng cách
Cho hàm số y = f(x) = ax2 + bx + c. Rút gọn biểu thức f(x + 3) – 3f(x + 2) + 3f(x + 1) ta được:
Tìm các giá trị của m để hàm số y = x2 + mx + 5 luôn đồng biến trên (1; +∞)
Cho hàm số f(x) = x2 + 2x − 3
Xét các mệnh đề sau:
iii) Giá trị nhỏ nhất của hàm số là một số âm.
Số mệnh đề đúng là: