Cho đường thẳng (d): 3x – 7y + 15 = 0. Mệnh đề nào sau đây sai?
A. là vec tơ chỉ phương của (d)
B. (d) có hệ số góc
C. (d) không đi qua gốc tọa độ
D. (d) đi qua hai điểm và N (5; 0)
Đáp án A: là vec tơ pháp tuyến của d nên là VTCP của d
Đáp án B: (d): 3x – 7y + 15 = 0 nên có hệ số góc
Đáp án C: Điểm O (0; 0) không thuộc d vì
Đáp án D: Giả sử : 3x – 7y + 15 = 0 (vl)
Đáp án cần chọn là: D
Cho đường thẳng (d): x − 2y + 1 = 0. Nếu đường thẳng (Δ) đi qua M (1; −1) và song song với (d) thì (Δ) có phương trình
Cho đường thẳng d: x − 2y – 3 = 0. Tìm tọa độ hình chiếu vuông góc H của điểm M (0; 1) trên đường thẳng
Phương trình đường thẳng đi qua hai điểm A (−2; 4); B (−6; 1) là:
Đường thẳng Δ vuông góc với đường thẳng AB, với A (−2; 1) và B (4; 3).
Đường thẳng Δ có một vectơ chỉ phương là
Cho đường thẳng (d): 3x + 5y – 15 = 0. Phương trình nào sau đây không phải là một dạng khác của (d):
Cho hai đường thẳng d và d’ biết d: 2x + y – 8 = 0 và d’: . Biết
I (a; b) là tọa độ giao điểm của d và d’. Khi đó tổng a + b bằng?
Cho ba điểm A (1; −2), B (5; −4), C (−1; 4). Đường cao AA′ của tam giác ABC có phương trình
Xét trong mặt phẳng tọa độ Oxy, cặp điểm nào dưới đây nằm cùng phía so với đường thẳng x − 2y + 3 = 0?
Cho đường thẳng và . Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho
Toạ độ giao điểm của hai đường thẳng 4x − 3y – 26 = 0 và 3x + 4y – 7 = 0.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A (1; 2), B (0; 3) và C (4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng
Trong mặt phẳng tọa độ Oxy cho hai điểm M (4; 1), N (−1; 2), M′ (x; y) là điểm đối xứng với M qua N. Khi đó x + y có giá trị là: