Xét trong mặt phẳng tọa độ Oxy, cặp điểm nào dưới đây nằm cùng phía so với đường thẳng x − 2y + 3 = 0?
A. M (0; 1) và P (0; 2)
B. P (0; 2) và N (1; 1)
C. M (0; 1) và Q (2; −1)
D. M (0; 1) và N (1; 5)
Ta thế tọa độ M (0; 1) và P (0; 2) vào đường thẳng:
(0 − 2.1 + 3) (0 − 2.2 + 3) < 0 nên loại A.
Ta thế tọa độ N (1; 1) và P (0; 2) vào đường thẳng:
(1 − 2.1 + 3) (0 − 2.2 + 3) < 0 nên loại B.
Ta thế tọa độ M (0; 1) và Q (2; −1) vào đường thẳng:
(0 − 2.1 + 3) (2 − 2.(−1) + 3) > 0 nên chọn C.
Đáp án cần chọn là: C
Cho đường thẳng (d): x − 2y + 1 = 0. Nếu đường thẳng (Δ) đi qua M (1; −1) và song song với (d) thì (Δ) có phương trình
Cho đường thẳng d: x − 2y – 3 = 0. Tìm tọa độ hình chiếu vuông góc H của điểm M (0; 1) trên đường thẳng
Phương trình đường thẳng đi qua hai điểm A (−2; 4); B (−6; 1) là:
Đường thẳng Δ vuông góc với đường thẳng AB, với A (−2; 1) và B (4; 3).
Đường thẳng Δ có một vectơ chỉ phương là
Cho đường thẳng (d): 3x + 5y – 15 = 0. Phương trình nào sau đây không phải là một dạng khác của (d):
Cho hai đường thẳng d và d’ biết d: 2x + y – 8 = 0 và d’: . Biết
I (a; b) là tọa độ giao điểm của d và d’. Khi đó tổng a + b bằng?
Cho ba điểm A (1; −2), B (5; −4), C (−1; 4). Đường cao AA′ của tam giác ABC có phương trình
Cho đường thẳng và . Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho
Toạ độ giao điểm của hai đường thẳng 4x − 3y – 26 = 0 và 3x + 4y – 7 = 0.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A (1; 2), B (0; 3) và C (4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng
Trong mặt phẳng tọa độ Oxy cho hai điểm M (4; 1), N (−1; 2), M′ (x; y) là điểm đối xứng với M qua N. Khi đó x + y có giá trị là: