Trục Oy là tiếp tuyến của đường tròn nào sau đây?
A.
B.
C.
D.
Do đường tròn tiếp xúc với trục Oy nên R = d(I, Oy) = |xI|.
Phương trình trục Oy là x = 0.
Đáp án A sai vì: Tâm I (0; 5) và bán kính . Ta có:
d (I, Oy) = |xI| ≠ R.
Đáp án B sai vì: Tâm và bán kính . Ta có:
d (I, Oy) = |xI| ≠ R.
Đáp án C đúng vì: Tâm I (1; 0) và bán kính R = 1. Ta có:
d (I, Oy) = |xI| = R.
Đáp án D sai vì: Tâm I (0; 0) và bán kính R =. Ta có:
d (I, Oy) = |xI| ≠ R
Đáp án cần chọn là: C
Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) có phương trình: . Tia Oy cắt (C) tại A (0; 2). Lập phương trình đường tròn (C′), bán kính R′ = 2 và tiếp xúc ngoài với (C) tại A
Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn (C) có phương trình . Tìm điểm M thuộc trục tung sao cho qua M kẻ được hai tiếp tuyến với (C) mà góc giữa hai tiếp tuyến đó bằng 600
Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A (−2; 1) và tiếp xúc với đường thẳng Δ: 3x − 4y + 10 = 0. Phương trình của đường tròn (C) là
Đường tròn (C) đi qua ba điểm O (0; 0), A (a; 0), B (0; b) có phương trình là
Đường tròn đường kính AB với A (1; 1), B (7; 5) có phương trình là
Trong mặt phẳng với hệ tọa độ Oxy cho hai đường thẳng Δ: x + 3y + 8 =0 , Δ′: 3x − 4y + 10 = 0 và điểm A (−2; 1). Viết phương trình đường tròn có tâm thuộc đường thẳng , đi qua điểm A và tiếp xúc với đường thẳng Δ′
Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C): . Viết phương trình đường thẳng song song với đường thẳng d: 3x + 4y – 2 = 0 và cắt đường tròn theo một dây cung có độ dài bằng 6.
Đường tròn x2 + y2 − 4x − 2y + 1 = 0 tiếp xúc đường thẳng nào trong các đường thẳng dưới đây?
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm A(−1; 1) và B(3; 3), đường thẳng Δ: 3x − 4y + 8 = 0. Có mấy phương trình đường tròn qua A, B và tiếp xúc với đường thẳng Δ?
Đường tròn (C) đi qua hai điểm A (−1; 2), B (−2; 3) và có tâm I thuộc đường thẳng Δ: 3x – y + 10 = 0. Phương trình của đường tròn (C) là:
Với những giá trị nào của m thì đường thẳng Δ: 4x + 3y + m = 0 tiếp xúc với đường tròn (C): x2 + y2 – 9 = 0
Trong mặt phẳng Oxy cho và đường thẳng d: 3x − 4y + m = 0 . Tìm m để trên d có duy nhất điểm P sao cho từ P vẽ 2 tiếp tuyến PA, PB của đường tròn và tam giác PAB là tam giác đều