Một mặt cầu tâm O nằm trên mặt phẳng đáy của hình chóp tam giác đều S.ABC có tất cả các cạnh bằng nhau, các đỉnh A,B,C thuộc mặt cầu. Biết bán kính mặt cầu là 1. Tính tổng độ dài l các giao tuyến của mặt cầu với các mặt bên của hình chóp thỏa mãn?
A.
B.
C.
D.
Chọn D.
Gọi D là trung điểm của đoạn AB kẻ dễ dàng chứng minh được
Suy ra I là tâm đường tròn (C) giao tuyến của mặt cầu tâm O với mặt phẳng (SAB). Gọi M,N lần lượt là giao điểm của đường tròn (C) với SB,SA; K là trung điểm của MB
Giả sử AB=a theo giả thiết ta suy ra
Ta có
Gọi r là bán kính đường tròn (C) khi đó
Ta có tam giác SIK vuông tại K và góc suy ra
Xét tam giác MIK có
Khi đó chiều dài cung MN bằng Vậy tổng độ dài l, các giao tuyến của mặt cầu với các mặt bên của hình chóp là
Cho lăng trụ tam giác đều ABC.A’B’C’ có tất cả các cạnh bằng a Khối trụ tròn xoay có hai đường tròn đáy ngoại tiếp hai tam giác đều ABC và A’B’C’ có thể tích bằng
Tính diện tích xung quanh S của hình nón có bán kính đáy r=4 và chiều cao h=3.
Cho một mô hình tứ diện đều ABCD cạnh 1 và vòng tròn thép có bán kính R Hỏi có thể cho mô hình tứ diện trên đi qua vòng tròn đó (bỏ qua bề dày của vòng tròn) thì bán kính R nhỏ nhất gần với số nào trong các số sau?
Cho phương trình Có bao nhiêu giá trị nguyên của tham số m để phương trình có nghiệm thực?
Cho tứ diện đều ABCD cạnh a. Lấy N,M là trung điểm của AB và AC Tính khoảng cách d giữa CN và DM.
Cho khối chóp S.ABC có tam giác ABC vuông tại và góc giữa SC với đáy bằng 45.A Thể tích của khối chóp S.ABC bằng
Cho hình nón có bán kính đáy bằng 5 và góc ở đỉnh bằng Diện tích xung quanh của hình nón đã cho bằng
Tìm tất cả các giá trị của tham số m để hàm số có cực đại và cực tiểu?
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng a. Trên các tia AA’, BB’, CC’ lần lượt lấy cách mặt phẳng đáy (ABC) một khoảng lần lượt là Tính góc giữa hai mặt phẳng (ABC) và
Cho hàm số y=f(x) có đạo hàm trên khoảng Hỏi hàm số y=f(x) có bao nhiêu điểm cực trị?