Tìm tất cả các giá trị thực của tham số m để đường thẳng (d): y = (3m + 2)x -7m – 1 vuông góc với đường thẳng
A. m = 0.
B.
C.
D.
Để đường thẳng (d) vuông góc với đường thẳng thì 2(3m + 2) = -1 hay:
Chọn B.
Biết rằng đồ thị hàm số y = ax + b đi qua điểm M(1; 4) và song song với đường thẳng y = 2x + 1, tính tổng S = a + b.
Tìm a và b để đồ thị hàm số y = ax + b đi qua các điểm A(-2; 1), B(1; -2).
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-2018; 2018] để hàm số y = (m – 2)x + 2m đồng biến trên R.
Biết rằng đồ thị hàm số y = ax + b đi qua điểm N(4; -1) và vuông góc với đường thẳng 4x – y + 1 = 0. Tính tích P = ab.
Biết rằng đồ thị hàm số y = ax + b đi qua điểm A(-3; 1) và có hệ số góc bằng -2. Tính tích P = ab.
Biết rằng đồ thị hàm số y = ax + b đi qua hai điểm M(-1; 3) và N(1; 2). Tính tổng S = a + b.
Tìm tất cả các giá trị thực của tham số m để đường thẳng y = (m2 – 3)x + 2m – 3 song song với đường thẳng y = x + 1.
Cho hàm số y = 2x + m + 1. Tìm giá trị thực của tham số m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
Cho hàm số y = ax2 + bx + c có đồ thị (P). Tọa độ đỉnh của (P) là: