Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

11/07/2024 115

Cho đường thẳng \[\left( {\rm{\Delta }} \right):3x - 2y + 1 = 0\]Viết PTĐT (d)  đi qua điểm M(1;2)  và  tạo với \[\left( \Delta \right)\;\;\]một góc \({45^0}\)

A.\[x - 5y + 9 = 0\]

B. \[x - 5y + 9 = 0\]hoặc \[5x + y - 7 = 0\]

Đáp án chính xác

C.\[5x + y + 7 = 0\]

D.\[x - 5y + 19 = 0\;\] hoặc \[ - 5x + y + 7 = 0\]

Trả lời:

verified Giải bởi Vietjack

+) TH1: (d) không có hệ số góc.

Khi đó phương trình (d) có dạng: x – c = 0.

(d) đi qua M(1;2) nên x – 1 = 0 nên có VTPT\[\vec n = \left( {1;0} \right)\]

\[ \Rightarrow \cos \left( {d,{\rm{\Delta }}} \right) = \frac{{\left| {\overrightarrow {{n_{\rm{\Delta }}}} .\overrightarrow {{n_d}} } \right|}}{{\left| {\overrightarrow {{n_{\rm{\Delta }}}} } \right|.\left| {\overrightarrow {{n_d}} } \right|}} = \frac{{\left| {3.1 - 2.0} \right|}}{{\sqrt {{3^2} + {{\left( { - 2} \right)}^2}} .\sqrt {{1^2} + {0^2}} }} = \frac{1}{{\sqrt {13} }} \ne \frac{{\sqrt 2 }}{2} = \cos {45^0}\]

Do đó đường thẳng này không thỏa mãn bài toán.

+) TH2: (d) có hệ số góc.

PTĐT (d)được viết dưới dạng:\[y - 2 = k\left( {x - 1} \right) \Leftrightarrow kx - y + 2 - k = 0\]

Vì (d) hợp với \[(\Delta )\;\]một góc \[{45^0}\] nên:\[{\rm{cos}}{45^0} = \frac{{|3k + ( - 1).( - 2)|}}{{\sqrt {{k^2} + 1} .\sqrt {{3^2} + {{( - 2)}^2}} }}\]

\[ \Leftrightarrow \frac{{\sqrt 2 }}{2} = \frac{{|3k + 2|}}{{\sqrt {13} .\sqrt {{k^2} + 1} }} \Leftrightarrow \frac{2}{4} = \frac{{9{k^2} + 12k + 4}}{{13.({k^2} + 1)}}\]

\[ \Leftrightarrow 5{k^2} + 24k - 5 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{k = \frac{1}{5}}\\{k = - 5}\end{array}} \right.\]

Vậy phương trình (d) là: \[\frac{1}{5}x - y + 2 - \frac{1}{5} = 0 \Leftrightarrow x - 5y + 9 = 0\] hay

\[ - 5x - y + 2 - ( - 5) = 0 \Leftrightarrow 5x + y - 7 = 0\]

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1;2), B(0;3) và C(4;0). Chiều cao của tam giác kẻ từ đỉnh A bằng:

Xem đáp án » 23/06/2022 176

Câu 2:

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng đi qua hai điểm A(1;2), B(4;6), tìm tọa độ điểm M trên trục Oy sao cho diện tích \[\Delta MAB\] bằng 1.

Xem đáp án » 23/06/2022 150

Câu 3:

Trên mặt phẳng tọa độOxy, cho tam giác ABC có tọa độ các đỉnh là A(2;3),B(5;0) và C(−1;0). Tìm tọa độ điểm M thuộc cạnh BC sao cho diện tích tam giác MAB bằng hai lần diện tích tam giác MAC

Xem đáp án » 23/06/2022 149

Câu 4:

Trong mặt phẳng với hệ toạ độ Oxy,  cho tam giác ABC  có phương trình đường phân giác trong góc A  là d1:x+y+2=0,  phương trình đường cao vẽ từ B  là d2:2xy+1=0,   cạnh AB  đi qua M(1;−1).  Tìm phương trình cạnh AC.

Xem đáp án » 23/06/2022 141

Câu 5:

Cho \[d:x + 3y - 6 = 0;d':3x + y + 2 = 0.\].   Lập phương trình hai đường phân giác của các góc tạo bởi d  và d′

Xem đáp án » 23/06/2022 140

Câu 6:

Lập phương trình đường phân giác trong của góc A  của ΔABC biết A(2;0);B(4;1);C(1;2)

Xem đáp án » 23/06/2022 139

Câu 7:

Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường thẳng \[(d):3x - 4y - 12 = 0\]Phương trình đường thẳng \[\left( \Delta \right)\;\]đi qua M(2;−1) và tạo với (d) một góc \[{45^o}\] có dạng \[ax + by + 5 = 0\], trong đó a,b cùng dấu. Khẳng định nào sau đây đúng?

Xem đáp án » 23/06/2022 114

Câu 8:

Trong mặt phẳng với hệ trục tọa độ Oxy, cho hình chữ nhật có hai cạnh nằm trên đường thẳng có phương trình lần lượt là \[2x - y + 3 = 02x - y + 3 = 0;\;\] và tọa độ một đỉnh là (2;3). Diện tích hình chữ nhật đó là: 

Xem đáp án » 23/06/2022 114

Câu 9:

Cho đường thẳng \[{d_1}:x + 2y - 7 = 0\] và \[{d_2}:2x - 4y + 9 = 0\]. Tính cosin của góc tạo bởi giữa hai đường thẳng đã cho.

Xem đáp án » 23/06/2022 112

Câu 10:

Khoảng cách từ giao điểm của hai đường thẳng \[x - 3y + 4 = 0\] và \[2x + 3y - 1 = 0\;\]đến đường thẳng \[\Delta :3x + y + 4 = 0\;\] bằng:

Xem đáp án » 23/06/2022 112

Câu 11:

Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A(−1;2) đến đường thẳng \[\Delta :mx + y - m + 4 = 0\;\] bằng \[2\sqrt 5 \].

Xem đáp án » 23/06/2022 110

Câu 12:

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm M(x0;y0) và đường thẳng \[\Delta :ax + by + c = 0\]. Khoảng cách từ điểm M đến \[\Delta \] được tính bằng công thức:

Xem đáp án » 23/06/2022 106

Câu 13:

Trong mặt phẳng với hệ tọa độ Oxy, cho \[\Delta ABC\] cân có đáy là BC.BC.  Đỉnh A  có tọa độ là các số dương, hai điểm B  và C  nằm trên trục Ox,  phương trình cạnh AB: \[y = 3\sqrt 7 (x - 1)\] Biết chu vi của \[\Delta ABC\] bằng 18, tìm tọa độ các đỉnh A,B,C.

Xem đáp án » 23/06/2022 105

Câu 14:

Tính góc tạo bởi giữa hai đường thẳng \[{d_1}:6x - 5y + 15 = 0\] và \({d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 10 - 6t}\\{y = 1 + 5t}\end{array}} \right.\).

Xem đáp án » 23/06/2022 102

Câu 15:

Trong mặt phẳng với hệ tọa độ Oxy,  cho hình chữ nhật ABCD  có điểm I(6;2) là giao điểm của 2  đường chéo AC  và BD.  Điểm M(1;5) thuộc đường thẳng AB  và trung điểm E  của cạnh CD  thuộc đường thẳng \[\Delta :x + y - 5 = 0.\].  Viết phương trình đường thẳng AB.

Xem đáp án » 23/06/2022 97

Câu hỏi mới nhất

Xem thêm »
Xem thêm »