Cho cấp số cộng \[\left( {{u_n}} \right)\]có \[{u_2} = 2017\;\] và \[{u_5} = 1945.\]. Tính \[{u_{2018}}\] .
A.\[{u_{2018}} = - 46367\]
B. \[{u_{2018}} = 50449\]
C. \[{u_{2018}} = - 46391\]
D. \[{u_{2018}} = 50473\]Trả lời:
\(\left\{ {\begin{array}{*{20}{c}}{{u_2} = 2017}\\{{u_5} = 1945}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{u_1} + d = 2017}\\{{u_1} + 4d = 1945}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{{u_1} = 2041}\\{d = - 24}\end{array}} \right.\)
\[ \Rightarrow {u_{2018}} = {u_1} + 2017d\]
\[ = 2041 + 2017( - 24) = - 46367\]
Đáp án cần chọn là: A
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số cộng : \[{x^3} - 3m{x^2} + 2m(m - 4)x + 9{m^2} - m = 0\;\]?
Cách 1: Giải bài toán bằng cách tự luận:
Giả sử phương trình có ba nghiệm phân biệt\[{x_1},{x_2},{x_3}\] lập thành một cấp số cộng. Theo định lí Vi-et ta có\[{x_1} + {x_2} + {x_3} = - \frac{b}{a} = 3m\]
Vì\[{x_1},{x_2},{x_3}\] lập thành một cấp số cộng nên
\[{x_1} + {x_3} = 2{x_2} \Rightarrow {x_1} + {x_2} + {x_3} = 3{x_2} = 3m \Leftrightarrow {x_2} = m\]
Thay\[{x_2} = m\] vào phương trình ban đầu ta được
\[{m^3} - 3{m^3} + 2{m^2}(m - 4) + 9{m^2} - m = {m^2} - m = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = 1}\end{array}} \right.\)
Thử lại:
Khi m=0 , phương trình trở thành\[{x^3} = 0 \Leftrightarrow x = 0\] phương trình có nghiệm duy nhất (loại)
Khi m=1 , phương trình trở thành\[{x^3} - 3{x^2} - 6x + 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 1}\\{x = 4}\end{array}} \right.\] Dễ thấy −2,1,4−2,1,4 lập thành 1 cấp số cộng có công sai d=3.
Vậy m=1 thỏa mãn yêu cầu bài toán.
Cách 2: Giải bài toán bằng cách trắc nghiệm.
Thử lần lượt từng đáp án. Trước hết ta thử đáp án A và D vì mm nguyên.
Khi m=0 ta có phương trình\[{x^3} = 0 \Leftrightarrow x = 0\] phương trình có nghiệm duy nhất (loại)
Khi m=1 phương trình trở thành \[{x^3} - 3{x^2} - 6x + 8 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = - 2}\\{x = 1}\\{x = 4}\end{array}} \right.\] Dễ thấy −2,1,4 lập thành 1 cấp số cộng có công sai d=3 .
Vậy m=1 thỏa mãn yêu cầu bài toán.
Cho cấp số cộng \[\left( {{x_n}} \right)\]có \[{x_3} + {x_{13}} = 80\]. Tính tổng S15 của 15 số hạng đầu tiên của cấp số cộng đó?
Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: \[{x^4} - 10{x^2} + 2{m^2} + 7m = 0\], tính tổng lập phương của hai giá trị đó.
Đặt\[t = {x^2}\,\,\left( {t \ge 0} \right)\] khi đó phương trình trở thành\[{t^2} - 10t + 2{m^2} + 7m = 0\](*)
Phương trình đã cho có 4 nghiệm dương phân biệt
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\Delta \prime >0}\\{S >0}\\{P >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{25 - 2{m^2} - 7m >0}\\{10 >0}\\{2{m^2} + 7m >0}\end{array}} \right. \Leftrightarrow 0 < 2{m^2} + 7m < 25\)
Với điều kiện trên thì (*) có 2 nghiệm phân biệt dương là\[{t_1},{t_2}\,\,({t_1} < {t_2})\] Do đó phương trình ban đầu có 4 nghiệm phân biệt được sắp xếp theo thứ tự tăng dần như sau\[ - \sqrt {{t_2}} , - \sqrt {{t_1}} ,\sqrt {{t_1}} ,\sqrt {{t_2}} \]
Bốn nghiệm này lập thành cấp số cộng thì
\[ - \sqrt {{t_1}} + \sqrt {{t_2}} = 2\sqrt {{t_1}} \Leftrightarrow 3\sqrt {{t_1}} = \sqrt {{t_2}} \Leftrightarrow 9{t_1} = {t_2}\]
Mà theo định lí Vi-et ta có\[{t_1} + {t_2} = 10 \Leftrightarrow 9{t_2} + {t_2} = 10 \Leftrightarrow {t_2} = 1 \Rightarrow {t_1} = 9\]
Lại có\[{t_1}{t_2} = 2{m^2} + 7m = 9 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 1}\\{m = - \frac{9}{2}}\end{array}} \right.(tm)\]
Do đó\[{1^3} + {\left( { - \frac{9}{2}} \right)^3} = - \frac{{721}}{8}\]
>>Cho các số thực x,y,z thỏa mãn điều kiện ba số \[\frac{1}{{x + y}},\frac{1}{{y + z}},\frac{1}{{z + x}}\;\] theo thứ tự lập thành một cấp số cộng. Mệnh đề nào dưới đây là mệnh đề đúng ?
Cho ba số dương a,b,c thỏa mãn điều kiện \[\frac{1}{{\sqrt b + \sqrt c }},\frac{1}{{\sqrt a + \sqrt b }},\frac{2}{{\sqrt c + \sqrt a }}\] lập thành một cấp số cộng. Mệnh đề nào dưới đây là đúng ?
Một người làm việc cho một công ty. Theo hợp đồng trong năm đầu tiên, tháng lương thứ nhất là 6 triệu đồng và lương tháng sau cao hơn tháng trước là 200 ngàn đồng. Hỏi theo hợp đồng tháng thứ 7 người đó nhận được lương là bao nhiêu?
Cho cấp số cộng \[\left( {{u_n}} \right)\]với \(\left\{ {\begin{array}{*{20}{c}}{{u_3} + {u_5} = 5}\\{{u_3}.{u_5} = 6}\end{array}} \right.\). Tìm số hạng đầu của cấp số cộng.
Cho cấp số cộng \[\left( {{u_n}} \right)\]xác định bởi \({u_3} = - 2\)và \({u_{n + 1}} = {u_n} + 3,\forall n \in {N^*}\) Xác định số hạng tổng quát của cấp số cộng đó.
Viết sáu số xen giữa 3 và 24 để được một cấp số cộng có 88 số hạng. Sáu số hạng cần viết thêm là :
Cho cấp số cộng 2;5;8;11;14... Công sai của cấp số cộng đã cho bằng
Biết rằng tồn tại các giá trị của \[x \in \left[ {0;2\pi } \right]\] để ba số \[1 + sinx,si{n^2}x,1 + sin3x\;\]lập thành một cấp số cộng, tính tổng S các giá trị đó của x.
Trên một bàn cờ có nhiều ô vuông. Người ta đặt 7 hạt dẻ vào ô vuông đầu tiên, sau đó đặt tiếp vào ô vuông thứ hai nhiều hơn ô đầu tiên là 5 hạt dẻ, tiếp tục đặt vào ô vuông thứ ba số hạt dẻ nhiều hơn ô thứ hai là 5 hạt dẻ,… và cứ thế tiếp tục đến ô cuối cùng. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng hết 25450 hạt dẻ. Hỏi bàn cờ đó có bao nhiêu ô?
Cho cấp số cộng \[\left( {{u_n}} \right)\]có công sai d = 2 và \[u_2^2 + u_3^2 + u_4^2\] đạt giá trị nhỏ nhất. Số 2018 là số hạng thứ bao nhiêu của cấp số cộng \[\left( {{u_n}} \right)?\]