Giới hạn \[\lim \frac{{\sqrt {{n^2} - 3n - 5} - \sqrt {9{n^2} + 3} }}{{2n - 1}}\] bằng?
A.\[\frac{5}{2}.\]
B. \[\frac{{ - 5}}{2}.\]
C. 1
D. -1
Cách 1:
\[\begin{array}{l}lim\frac{{\sqrt {{n^2} - 3n - 5} - \sqrt {9{n^2} + 3} }}{{2n - 1}}\\ = lim\frac{{\left( {\sqrt {{n^2} - 3n - 5} - \sqrt {9{n^2} + 3} } \right).\left( {\sqrt {{n^2} - 3n - 5} + \sqrt {9{n^2} + 3} } \right)}}{{\left( {\sqrt {{n^2} - 3n - 5} + \sqrt {9{n^2} + 3} } \right).\left( {2n - 1} \right)}}\\ = lim\frac{{({n^2} - 3n - 5) - (9{n^2} + 3)}}{{\left( {\sqrt {{n^2} - 3n - 5} + \sqrt {9{n^2} + 3} } \right).\left( {2n - 1} \right)}}\\ = lim\frac{{ - 8{n^2} - 3n - 8}}{{\left( {\sqrt {{n^2} - 3n - 5} + \sqrt {9{n^2} + 3} } \right).\left( {2n - 1} \right)}}\\ = lim\frac{{ - 8 - \frac{3}{n} - \frac{8}{{{n^2}}}}}{{\left( {\sqrt {1 - \frac{3}{n} - \frac{5}{{{n^2}}}} + \sqrt {9 + \frac{3}{{{n^2}}}} } \right)\left( {2 - \frac{1}{n}} \right)}} = \frac{{ - 8}}{{4.2}} = - 1\end{array}\]
Cách 2: Chia cả tử và mẫu cho n.
\[\lim \frac{{\sqrt {{n^2} - 3n - 5} - \sqrt {9{n^2} + 3} }}{{2n - 1}} = \lim \frac{{\sqrt {1 - \frac{3}{n} - \frac{5}{{{n^2}}}} - \sqrt {9 + \frac{3}{{{n^2}}}} }}{{2 - \frac{1}{n}}} = \lim \frac{{1 - 3}}{2} = - 1\]
Đáp án cần chọn là: D
Tính giới hạn \[\lim \frac{{{n^2} - 3{n^3}}}{{2{n^3} + 5n - 2}}\].
Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng
Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?
Gọi S là tổng của cấp số nhân lùi vô hạn \[\left( {{u_n}} \right)\;\]có công bội \[q\left( {\left| q \right| < 1} \right)\]. Khẳng định nào sau đây đúng ?
Biết \[\lim {u_n} = 3\]. Chọn mệnh đề đúng trong các mệnh đề sau.
Cho dãy số \[({u_n})\]với \[{u_n} = \frac{{\left( {2n + 1} \right)\left( {1 - 3n} \right)}}{{\sqrt[3]{{{n^3} + 5n - 1}}}}\] Khi đó \[lim\,{u_n}\] bằng?
Cho dãy số \[({u_n})\]với \[{u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}\]
Khi đó \[lim\,{u_n}\] bằng?
Cho hai dãy số \[\left( {{u_n}} \right),\left( {{v_n}} \right)\]thỏa mãn \[\left| {{u_n}} \right| \le {v_n}\] với mọi n và \[\lim {u_n} = 0\] thì: