Cho dãy số \[\left( {{u_n}} \right)\]xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1}\\{{u_{n + 1}} = \sqrt {{u_n}({u_n} + 1)({u_n} + 2)({u_n} + 3) + 1} }\end{array}} \right.\left( {n \ge 1} \right)\) Đặt \[{v_n} = \sum\limits_{i = 1}^n {\frac{1}{{{u_i} + 2}}} \]. Tính \[lim\,{v_n}\]bằng?
A.\[ + \infty .\]
B. 0
C. \(\frac{1}{2}\)
D. 1
\[{u_2} = \sqrt {1.2.3.4 + 1} = 5,{u_n} >0,\forall n = 1;2;...\]
Ta có:
\[{u_{n + 1}} = \sqrt {{u_n}({u_n} + 1)({u_n} + 2)({u_n} + 3) + 1} \]
\[ = \sqrt {(u_n^2 + 3{u_n})(u_n^2 + 3{u_n} + 2) + 1} \]
\[ = \sqrt {{{(u_n^2 + 3{u_n})}^2} + 2(u_n^2 + 3{u_n}) + 1} \]
\[ = \sqrt {{{(u_n^2 + 3{u_n} + 1)}^2}} = u_n^2 + 3{u_n} + 1\]
\(\begin{array}{l} \Rightarrow {u_{n + 1}} + 1 = u_n^2 + 3{u_n} + 2 = ({u_n} + 1)({u_n} + 2)\\ \Rightarrow \frac{1}{{{u_{n + 1}} + 1}} = \frac{1}{{({u_n} + 1)({u_n} + 2)}} = \frac{1}{{{u_n} + 1}} - \frac{1}{{{u_n} + 2}}\\ \Rightarrow \frac{1}{{{u_n} + 2}} = \frac{1}{{{u_n} + 1}} - \frac{1}{{{u_{n + 1}} + 1}}\end{array}\)
Do đó:
\(\begin{array}{l}\\{v_n} = \mathop \sum \limits_{i = 1}^n \frac{1}{{{u_i} + 2}} = \mathop \sum \limits_{i = 1}^n \left( {\frac{1}{{{u_i} + 1}} - \frac{1}{{{u_{i + 1}} + 1}}} \right)\end{array}\)
\[ = \frac{1}{{{u_1} + 1}} - \frac{1}{{{u_{n + 1}} + 1}} = \frac{1}{2} - \frac{1}{{{u_{n + 1}} + 1}}\]
Xét hiệu\[{u_{n + 1}} - {u_n} = u_n^2 + 3{u_n} + 1 - {u_n} = {\left( {{u_n} + 1} \right)^2} >0\]
\[ \Rightarrow \left( {{u_n}} \right)\]là dãy tăng.
Giả sử
\[\lim {u_{n + 1}} = \lim {u_n} = a >0 \Rightarrow a = {a^2} + 3a + 1 \Rightarrow {a^2} + 2a + 1 = 0 \Leftrightarrow a = - 1\,\,\left( {ktm} \right) \Rightarrow \lim {u_n} = + \infty \]\[ \Rightarrow \lim {v_n} = \frac{1}{2} - \frac{1}{{{u_{n + 1}} + 1}} = \frac{1}{2} - 0 = \frac{1}{2}.\]
Đáp án cần chọn là: C
Tính giới hạn \[\lim \frac{{{n^2} - 3{n^3}}}{{2{n^3} + 5n - 2}}\].
Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng
Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?
Gọi S là tổng của cấp số nhân lùi vô hạn \[\left( {{u_n}} \right)\;\]có công bội \[q\left( {\left| q \right| < 1} \right)\]. Khẳng định nào sau đây đúng ?
Biết \[\lim {u_n} = 3\]. Chọn mệnh đề đúng trong các mệnh đề sau.
Cho dãy số \[({u_n})\]với \[{u_n} = \frac{{\left( {2n + 1} \right)\left( {1 - 3n} \right)}}{{\sqrt[3]{{{n^3} + 5n - 1}}}}\] Khi đó \[lim\,{u_n}\] bằng?
Cho hai dãy số \[\left( {{u_n}} \right),\left( {{v_n}} \right)\]thỏa mãn \[\left| {{u_n}} \right| \le {v_n}\] với mọi n và \[\lim {u_n} = 0\] thì:
Cho dãy số \[({u_n})\]với \[{u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}\]
Khi đó \[lim\,{u_n}\] bằng?