Thứ năm, 19/12/2024
IMG-LOGO

Câu hỏi:

12/07/2024 114

1) Giải hệ phương trình \[\left\{ \begin{array}{l}\frac{6}{x} + \frac{5}{y} = 3\\\frac{9}{x} - \frac{{10}}{y} = 1\end{array} \right..\]

2) Giải phương trình: \[\left| {1 - 2x} \right| + \left| {x + 1} \right| = x + 2\].

3) Cho phương trình \[{x^2} - mx + 1 = 0\]. Không giải phương trình, tìm giá trị của m để phương trình có hai nghiệm phân biệt \[{x_1},{x_2}\] thỏa mãn hệ thức:\[{\left( {{x_1} + 1} \right)^2} + {\left( {{x_2} + 1} \right)^2} = 2.\]

Trả lời:

verified Giải bởi Vietjack

1) Điều kiện: \[xy \ne 0\]

Đặt \[\left\{ \begin{array}{l}\frac{1}{x} = a\\\frac{1}{y} = b\end{array} \right.\]. Hệ phương trình trở thành: \[\left\{ \begin{array}{l}6a + 5b = 1\\9a - 10b = 1\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{3 - 5b}}{6}\\9\left( {\frac{{3 - 5b}}{6}} \right) - 10b = 1\end{array} \right. \Leftrightarrow \left( \begin{array}{l}a = \frac{{3 - 5b}}{6}\\\frac{7}{2} = \frac{{35}}{2}b\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{3}\\b = \frac{1}{5}\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{x} = \frac{1}{3}\\\frac{1}{y} = \frac{1}{5}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = 5\end{array} \right.\] (thỏa mãn điều kiện).

Vậy hệ phương trình có nghiệm: \[\left( {x;y} \right) = \left( {3;5} \right)\].

2) Ta có bảng xét dấu các biểu thức

Media VietJack

+ Xét: \[x \le - 1\left( * \right)\].

Phương trình tương đương với: \[\left( {1 - 2x} \right) - \left( {x + 1} \right) = x + 2\]

\[ \Leftrightarrow - 3x = x + 2 \Leftrightarrow 4x = 2 \Leftrightarrow x = \frac{1}{2}\] (không thỏa mãn điều kiện (*)).

+ Xét: \[ - 1 < x \le \frac{1}{2}\left( {**} \right)\]

Phương trình tương đương với: \[\left( {1 - 2x} \right) + \left( {x + 1} \right) = x + 2\]

\[ \Leftrightarrow 2 - x = x + 2 \Leftrightarrow 0 = 2x \Leftrightarrow x = 0\] (thỏa mãn điều kiện (**)).

+ Xét: \[x > \frac{1}{2}\left( {***} \right)\].

Phương trình tương đương với: \[ - \left( {1 - 2x} \right) + \left( {x + 1} \right) = x + 2\]

\[ \Leftrightarrow 3x = x + 2 \Leftrightarrow 2x = 2 \Leftrightarrow x = 1\] (thỏa mãn điều kiện (***)).

Vậy phương trình có nghiệm: \[x = 0;x = 1\].

3) Ta có: \[\Delta = {\left( { - m} \right)^2} - 4.1.1 = {m^2} - 4.\]

Để phương trình có hai nghiệm phân biệt thì: \[{m^2} - 4 \ge 0 \Leftrightarrow \left[ \begin{array}{l}m \ge 2\\m \le - 2\end{array} \right.\].

Theo hệ thức Vi-ét, ta có: \[\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}.{x_2} = 1\end{array} \right..\]

Ta có \[{\left( {{x_1} + 1} \right)^2} + {\left( {{x_2} + 1} \right)^2} = 2 \Leftrightarrow x_1^2 + 2{x_1} + 1 + x_2^2 + 2{x_2} + 1 = 2\]

\[ \Leftrightarrow {\left( {{x_1} + {x_2}} \right)^2} + 2\left( {{x_1} + {x_2}} \right) - 2{x_1}.{x_2} = 0.\]

\[ \Leftrightarrow {m^2} + 2m - 2 = 0 \Leftrightarrow \left[ \begin{array}{l}m = \sqrt 3 - 1\left( l \right)\\m = - \sqrt 3 - 1\end{array} \right.\]. Vậy \[m = - \sqrt 3 - 1\].

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

1)  Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.

Một xe mô-tô đi từ A đến B (cách nhau 60km) theo thời gian đã định. Nửa quãng đường đầu xe đi với vận tốc nhanh hơn vận tốc dự định 10km/h và nửa quãng đường sau xe đi với vận tốc chậm hơn vận tốc dự định 6km/h. Biết rằng xe về đến B đúng thời gian quy định, hỏi vận tốc dự định là bao nhiêu?

2) Tìm các giá trị m để hàm số \[y = \left( {\sqrt m  - 2} \right)x + 3\] đồng biến.

Xem đáp án » 25/06/2022 140

Câu 2:

Đường tròn (O), đường kính. Một cát tuyến MN quay quanh trung điểm H của OB.

1) Chứng minh MN khi di động, trung điểm I của luôn nằm trên một đường tròn cố định.

2) Từ A kẻ \[Ax \bot MN\], tia BI cắt Ax tại C. Chứng minh tứ giác CMBN là hình bình hành.

3) Chứng minh C là trực tâm của tam giác AMN.

4) Khi MN quay quanh H thì C di động trên đường nào?

5) Cho \[AM.AN = 3{R^2},AN = R\sqrt 3 \]. Tính diện tích phần hình tròn (O) nằm ngoài tam giác AMN?

Xem đáp án » 25/06/2022 115

Câu 3:

Cho biểu thức: \[P = \frac{{x\sqrt x + 1}}{{\sqrt x + 1}} - \sqrt x \]

1) Tìm điều kiện xác định và rút gọn biểu thức P?

2) Tính giá trị của P tại x thỏa mãn \[{x^2} - \frac{{\sqrt 5 }}{{\sqrt 5 - 2}}x - \left( {6 + 2\sqrt 5 } \right) = 0?\]

Xem đáp án » 25/06/2022 103

Câu 4:

Cho x, y thỏa mãn: \[{x^2} + {y^2} - 4x - 2 = 0\]. Chứng minh rằng 1046x2+y210+46

Xem đáp án » 25/06/2022 98

Câu hỏi mới nhất

Xem thêm »
Xem thêm »