Cho x, y thỏa mãn: \[{x^2} + {y^2} - 4x - 2 = 0\]. Chứng minh rằng
Câu V:
Phương trình tương đương với: \[{x^2} + {y^2} = 4x + 2{\rm{ }}\left( 1 \right)\]
Ta có: \[{x^2} - 4x - 2 = - {y^2} \le 0 \Rightarrow \left( {x - \sqrt 6 - 2} \right)\left( {x + \sqrt 6 - 2} \right) \le 0\]
\[ \Leftrightarrow 2 - \sqrt 6 \le x \le 2 + \sqrt 6 \]
\[ \Leftrightarrow 10 - 4\sqrt 6 \le 4x + 2 \le 10 + 4\sqrt 6 {\rm{ }}\left( 2 \right)\]
Từ (1) và (2), suy ra: \[10 - 4\sqrt 6 \le {x^2} + {y^2} \le 10 + 4\sqrt 6 {\rm{ }}\].
Nhận xét: Bài toán áp dụng biến đổi tương đương một phương trình, giải bất phương trình bậc hai.
1) Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình.
Một xe mô-tô đi từ A đến B (cách nhau 60km) theo thời gian đã định. Nửa quãng đường đầu xe đi với vận tốc nhanh hơn vận tốc dự định 10km/h và nửa quãng đường sau xe đi với vận tốc chậm hơn vận tốc dự định 6km/h. Biết rằng xe về đến B đúng thời gian quy định, hỏi vận tốc dự định là bao nhiêu?
2) Tìm các giá trị m để hàm số \[y = \left( {\sqrt m - 2} \right)x + 3\] đồng biến.
Đường tròn (O), đường kính. Một cát tuyến MN quay quanh trung điểm H của OB.
1) Chứng minh MN khi di động, trung điểm I của luôn nằm trên một đường tròn cố định.
2) Từ A kẻ \[Ax \bot MN\], tia BI cắt Ax tại C. Chứng minh tứ giác CMBN là hình bình hành.
3) Chứng minh C là trực tâm của tam giác AMN.
4) Khi MN quay quanh H thì C di động trên đường nào?
5) Cho \[AM.AN = 3{R^2},AN = R\sqrt 3 \]. Tính diện tích phần hình tròn (O) nằm ngoài tam giác AMN?
1) Giải hệ phương trình \[\left\{ \begin{array}{l}\frac{6}{x} + \frac{5}{y} = 3\\\frac{9}{x} - \frac{{10}}{y} = 1\end{array} \right..\]
2) Giải phương trình: \[\left| {1 - 2x} \right| + \left| {x + 1} \right| = x + 2\].
3) Cho phương trình \[{x^2} - mx + 1 = 0\]. Không giải phương trình, tìm giá trị của m để phương trình có hai nghiệm phân biệt \[{x_1},{x_2}\] thỏa mãn hệ thức:\[{\left( {{x_1} + 1} \right)^2} + {\left( {{x_2} + 1} \right)^2} = 2.\]
Cho biểu thức: \[P = \frac{{x\sqrt x + 1}}{{\sqrt x + 1}} - \sqrt x \]
1) Tìm điều kiện xác định và rút gọn biểu thức P?
2) Tính giá trị của P tại x thỏa mãn \[{x^2} - \frac{{\sqrt 5 }}{{\sqrt 5 - 2}}x - \left( {6 + 2\sqrt 5 } \right) = 0?\]