Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

07/07/2024 116

Cho hàm số f(x) liên tục trên \(\mathbb{R}\) thỏa mãn các điều kiện: f\[\left( 0 \right) = 2\sqrt 2 ,\;f(x) > 0,\forall x \in \mathbb{R}\;\] và \[f(x).f\prime (x) = (2x + 1)\sqrt {1 + {f^2}(x)} ,\forall x \in \mathbb{R}\]. Khi đó giá trị f(1) bằng

A.\[\sqrt {15} \]

B. \[\sqrt {23} \]

C. \[\sqrt {24} \]

Đáp án chính xác

D. \[\sqrt {26} \]

Trả lời:

verified Giải bởi Vietjack

Ta có:\[f\left( x \right).f'\left( x \right) = \left( {2x + 1} \right)\sqrt {1 + {f^2}\left( x \right)} \]

\[ \Rightarrow \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }} = 2x + 1 \Rightarrow \smallint \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx = \smallint \left( {2x + 1} \right)dx\]

Tính\[\smallint \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx\]  ta đặt

\[\sqrt {1 + {f^2}\left( x \right)} = t \Rightarrow 1 + {f^2}\left( x \right) = {t^2} \Rightarrow 2f\left( x \right)f'\left( x \right)dx = 2tdt\]

\[ \Rightarrow f\left( x \right)f'\left( x \right)dx = tdt\]

Thay vào ta được

\[\smallint \frac{{f\left( x \right).f'\left( x \right)}}{{\sqrt {1 + {f^2}\left( x \right)} }}dx = \smallint \frac{{tdt}}{t} = \smallint dt = t + C = \sqrt {1 + {f^2}\left( x \right)} + C\]

Do đó\[\sqrt {1 + {f^2}\left( x \right)} + C = {x^2} + x\]

\[f\left( 0 \right) = 2\sqrt 2 \Rightarrow \sqrt {1 + {{\left( {2\sqrt 2 } \right)}^2}} + C = 0 \Leftrightarrow C = - 3\]

Từ đó:

\[\begin{array}{*{20}{l}}{\sqrt {1 + {f^2}\left( x \right)} - 3 = {x^2} + x \Rightarrow \sqrt {1 + {f^2}\left( 1 \right)} - 3 = 1 + 1 \Leftrightarrow \sqrt {1 + {f^2}\left( 1 \right)} = 5}\\{ \Leftrightarrow 1 + {f^2}\left( 1 \right) = 25 \Leftrightarrow {f^2}\left( 1 \right) = 24 \Leftrightarrow f\left( 1 \right) = \sqrt {24} }\end{array}\]

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tìm họ nguyên hàm của hàm số \[f\left( x \right) = \frac{{{x^2} - 2x + 1}}{{x - 2}}\]

Xem đáp án » 13/10/2022 195

Câu 2:

Chọn mệnh đề đúng:

Xem đáp án » 13/10/2022 148

Câu 3:

Đề thi THPT QG - 2021 - mã 101

Cho hàm số \[f\left( x \right) = {e^x} + 2\]. Khẳng định nào dưới đây đúng?

Xem đáp án » 13/10/2022 144

Câu 4:

Một chiếc xe đua F1 đạt tới vận tốc lớn nhất là 360km/h. Đồ thị bên biểu thị vận tốc v của xe trong 5 giây đầu tiên kể từ lúc xuất phát. Đồ thị trong 2 giây đầu là một phần của một parabol định tại gốc tọa độ O, giây tiếp theo là đoạn thẳng và sau đúng ba giây thì xe đạt vận tốc lớn nhất. Biết rằng mỗi đơn vị trục hoành biểu thị 1 giây, mỗi đơn vị trực tung biểu thị 10 m/s và trong 5 giây đầu xe chuyển động theo đường thẳng. Hỏi trong 5 giây đó xe đã đi được quãng đường là bao nhiêu?

Xem đáp án » 13/10/2022 144

Câu 5:

Cho f(x) là đạo hàm của hàm số F(x). Chọn mệnh đề đúng:

Xem đáp án » 13/10/2022 143

Câu 6:

Hàm số nào không là nguyên hàm của hàm số \[y = 3{x^4}\]?

Xem đáp án » 13/10/2022 133

Câu 7:

Mệnh đề nào dưới đây là sai?

Xem đáp án » 13/10/2022 129

Câu 8:

Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) nếu:

Xem đáp án » 13/10/2022 123

Câu 9:

Đề thi THPT QG - 2021 - mã 101

Cho hàm số \[f\left( x \right) = {x^2} + 4\]. Khẳng định nào dưới đây đúng?

Xem đáp án » 13/10/2022 116

Câu 10:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 13/10/2022 114

Câu 11:

Hàm số \[y = sinx\;\] là một nguyên hàm của hàm số nào trong các hàm số sau?

\[{\left( {\sin x} \right)^\prime } = \cos x \Rightarrow y = \sin x\] là một nguyên hàm của hàm số\[y = \cos x\]

Xem đáp án » 13/10/2022 113

Câu 12:

Giả sử \[F\left( x \right) = \left( {a{x^2} + bx + c} \right){e^x}\] là một nguyên hàm của hàm số \[f\left( x \right) = {x^2}{e^x}\]. Tính tích P=abc.

Xem đáp án » 13/10/2022 109

Câu 13:

Một đám vi trùng tại ngày thứ tt có số lượng N(t), biết rằng \[N\prime (t) = \frac{{4000}}{{1 + 0,5t\;}}\] và lúc đầu đám vi trùng có 250000 con. Hỏi số lượng vi trùng tại ngày thứ 10 (lấy theo phần nguyên) là bao nhiêu?

Xem đáp án » 13/10/2022 109

Câu 14:

Tìm hàm số F(x) biết \[F\prime (x) = 3{x^2} + 2x - 1\;\] và đồ thị hàm số y=F(x) cắt trục tung tại điểm có tung độ bằng 2. Tổng các hệ số của F(x) là:

Xem đáp án » 13/10/2022 104

Câu 15:

Họ nguyên hàm của hàm số \[f\left( x \right) = x\left( {2 + 3{x^2}} \right)\] là

Xem đáp án » 13/10/2022 103

Câu hỏi mới nhất

Xem thêm »
Xem thêm »