IMG-LOGO

Câu hỏi:

11/07/2024 96

Tính tích phân \[I = \mathop \smallint \limits_{\ln 2}^{\ln 5} \frac{{{e^{2x}}}}{{\sqrt {{e^x} - 1} }}dx\] bằng phương pháp đổi biến số \[u = \sqrt {{e^x} - 1} \]. Khẳng định nào sau đây là khẳng định đúng?

A.\[I = \left( {\frac{{{u^3}}}{3} + u} \right)\left| {_1^2} \right.\]

B. \[I = \frac{4}{3}\left( {{u^3} + u} \right)\left| {_1^2} \right.\]

C. \[I = 2\left( {\frac{{{u^3}}}{3} + u} \right)\left| {_1^2} \right.\]

Đáp án chính xác

D. \[I = \frac{1}{3}\left( {\frac{{{u^3}}}{3} + u} \right)\left| {_1^2} \right.\]

Trả lời:

verified Giải bởi Vietjack

Đặt\[u = \sqrt {{e^x} - 1} \Rightarrow {u^2} = {e^x} - 1 \Rightarrow 2udu = {e^x}dx\] và\[{e^x} = {u^2} + 1\]

Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = ln2 \Rightarrow u = 1}\\{x = ln5 \Rightarrow u = 2}\end{array}} \right.\)

Khi đó ta có

\(I = \int\limits_{\ln 2}^{\ln 5} {\frac{{{e^{2x}}}}{{\sqrt {{e^x} - 1} }}dx = 2\int\limits_1^2 {\frac{{({u^2} + 1)udu}}{u}} } = 2\int\limits_1^2 {({u^2} + 1)du} = = 2\left( {\frac{{{u^3}}}{3} + u} \right)\left| {_1^2} \right.\)

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) liên tục trên R  và \[\mathop \smallint \limits_{ - 2}^4 f(x)dx = 2\] . Mệnh đề nào sau đây là sai?

Xem đáp án » 13/10/2022 140

Câu 2:

Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} \sin x\sqrt {8 + \cos x} dx\] Đặt \[u = 8 + cosx\] thì kết quả nào sau đây là đúng?

Xem đáp án » 13/10/2022 137

Câu 3:

Cho y=f(x) là hàm số lẻ và liên tục trên \[\left[ { - a;a} \right].\]Chọn kết luận đúng:

Xem đáp án » 13/10/2022 128

Câu 4:

Hàm số y=f(x) có nguyên hàm trên (a;b)  đồng thời thỏa mãn f(a)=f(b). Lựa chọn phương án đúng:

Xem đáp án » 13/10/2022 127

Câu 5:

Cho \[\mathop \smallint \nolimits_0^4 f(x)dx = - 1\], tính \(I = \mathop \smallint \limits_0^1 f(4x)dx\):

Xem đáp án » 13/10/2022 126

Câu 6:

Cho tích phân \[I = \mathop \smallint \limits_1^{\sqrt 3 } \frac{{\sqrt {1 + {x^2}} }}{{{x^2}}}dx\]. Nếu đổi biến số \[t = \frac{{\sqrt {{x^2} + 1} }}{x}\;\] thì:

Xem đáp án » 13/10/2022 119

Câu 7:

Tính tích phân \[I = \mathop \smallint \limits_0^\pi {\cos ^3}x\sin xdx\]

Đặt \[\cos x = t \Rightarrow - \sin xdx = dt \Rightarrow \sin xdx = - dt\]

Đổi cận:\(\left\{ {\begin{array}{*{20}{c}}{x = 0 \Rightarrow t = 1}\\{x = \pi \Rightarrow t = - 1}\end{array}} \right.\)

\( \Rightarrow I = - \int\limits_1^{ - 1} {{t^3}dt = } \int\limits_{ - 1}^1 {{t^3}dt = \frac{{{t^4}}}{4}} \left| {_{ - 1}^1} \right. = \frac{1}{4} - \frac{1}{4} = 0\)

Xem đáp án » 13/10/2022 113

Câu 8:

 \[\mathop \smallint \limits_0^1 \frac{{\pi {x^3} + {2^x} + {\rm{e}}{x^3}{{.2}^x}}}{{\pi + {\rm{e}}{{.2}^x}}}{\rm{d}}x = \frac{1}{m} + \frac{1}{{{\rm{e}}\ln n}}\ln \left( {p + \frac{{\rm{e}}}{{{\rm{e}} + \pi }}} \right)\] với m, n, p là các số nguyên dương. Tính tổng \[S = m + n + p\].

Xem đáp án » 13/10/2022 113

Câu 9:

Cho \[2\sqrt 3 m - \mathop \smallint \limits_0^1 \frac{{4{x^3}}}{{{{\left( {{x^4} + 2} \right)}^2}}}dx = 0\]. Khi đó \[144{m^2} - 1\;\]bằng:

Xem đáp án » 13/10/2022 107

Câu 10:

Cho hàm số f(x) liên tục trên R thỏa mãn điều kiện \[x.f({x^3}) + f({x^2} - 1) = {e^{{x^2}}},\forall x \in \mathbb{R}\]. Khi đó giá trị của \[\mathop \smallint \limits_{ - 1}^0 f\left( x \right)dx\] là:

Xem đáp án » 13/10/2022 107

Câu 11:

Cho tích phân \[I = \mathop \smallint \limits_0^1 \frac{{dx}}{{\sqrt {4 - {x^2}} }}\]. Bằng phương pháp đổi biến thích hợp ta đưa được tích phân đã cho về dạng:

Xem đáp án » 13/10/2022 105

Câu 12:

Cho hàm số f(x) liên tục trên \[\left[ { - 1;2} \right]\]và thỏa mãn điều kiện \[f\left( x \right) = \sqrt {x + 2} + xf\left( {3 - {x^2}} \right)\] Tính tích phân \[\mathop \smallint \limits_{ - 1}^2 f\left( x \right)dx\]

Xem đáp án » 13/10/2022 105

Câu 13:

Biết rằng \[I = \mathop \smallint \limits_0^1 \frac{x}{{{x^2} + 1}}dx = \ln a\] với \[a \in R\]. Khi đó giá trị của a bằng:

Xem đáp án » 13/10/2022 104

Câu 14:

Cho hàm số f(x) liên tục trên đoạn \[\left[ {0;1} \right]\;\]và \[\mathop \smallint \limits_0^{\frac{\pi }{2}} f\left( {\sin x} \right)dx = 5\] Tính \[I = \mathop \smallint \limits_0^\pi xf\left( {\sin x} \right)dx\]

Xem đáp án » 13/10/2022 103

Câu 15:

Với mỗi số k, đặt \[{I_k} = \int\limits_{ - \sqrt k }^{\sqrt k } {\sqrt {k - {x^2}} } dx\]. Khi đó \[{I_1} + {I_2} + {I_3} + ... + {I_{12}}\;\] bằng:

Xem đáp án » 13/10/2022 102

Câu hỏi mới nhất

Xem thêm »
Xem thêm »