IMG-LOGO

Câu hỏi:

10/07/2024 93

Nếu một khối chóp có thể tích bằng a3 và diện tích mặt đáy bằng a2 thì chiều cao của khối chóp bằng:


A.2a



B.3a


Đáp án chính xác


C.\(\frac{a}{3}\)


D.a

Trả lời:

verified Giải bởi Vietjack

Chiều cao của khối chóp đã cho là: 
\[h = \frac{{3V}}{S} = \frac{{3{a^3}}}{{{a^2}}} = 3a.\]

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Đường thẳng SC tạo với đáy góc 450. Gọi M,N lần lượt là trung điểm của AB và AD. Thể tích của khối chóp S.MCDN là:

Xem đáp án » 13/10/2022 205

Câu 2:

Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D thỏa mãn \[SA \bot \left( {ABCD} \right)\;\] và \[AB = 2AD = 2CD = 2a = \sqrt 2 SA\]. Thể tích khối chóp S.BCD là:

Xem đáp án » 13/10/2022 156

Câu 3:

Cho khối chóp có thể tích V, diện tích đáy là S và chiều cao h. Chọn công thức đúng:

Xem đáp án » 13/10/2022 147

Câu 4:

Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích khối chóp S.ABC?

Xem đáp án » 13/10/2022 146

Câu 5:

Cho hình chóp S.ABC, đáy là tam giác ABC có \[AB = BC\sqrt 5 ,\;AC = 2BC\sqrt 2 \], hình chiếu của S lên mặt phẳng (ABC) là trung điểm O của cạnh AC. Khoảng cách từ A đến mặt phẳng (SBC) bằng 2. Mặt phẳng (SBC) hợp với mặt phẳng (ABC) một góc α thay đổi. Biết rằng giá trị nhỏ nhất của thể tích khối chóp S.ABC bằng \(\frac{{\sqrt a }}{b}\), trong đó \[a,b \in {\mathbb{N}^*},\;\]a là số nguyên tố. Tổng a+b bằng:

Xem đáp án » 13/10/2022 133

Câu 6:

Phép vị tự tỉ \[k > 0\;\]biến khối chóp có thể tích V thành khối chóp có thể tích V′. Khi đó:

Xem đáp án » 13/10/2022 127

Câu 7:

Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt đáy và có độ dài là a. Thể tích khối tứ diện S.BCD bằng:

Xem đáp án » 13/10/2022 126

Câu 8:

Thể tích khối bát diện đều cạnh a  bằng:

Thể tích khối bát diện đều\[V = 2{V_{S.ABCD}}\]

Gọi\[O = AC \cap BD \Rightarrow SO \bot \left( {ABCD} \right)\]

Vì ABCD là hình vuông nên \[AC = BD = a\sqrt 2 \Rightarrow OA = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\]

\[SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OA \Rightarrow {\rm{\Delta }}SOA\]vuông tại O

\[ \Rightarrow SO = \sqrt {S{A^2} - O{A^2}} = \sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{2}\]\[ \Rightarrow {V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}\frac{{a\sqrt 2 }}{2}.{a^2} = \frac{{{a^3}\sqrt 2 }}{6}\]

\[ \Rightarrow V = 2\frac{{{a^3}\sqrt 2 }}{6} = \frac{{{a^3}\sqrt 2 }}{3}\]

Xem đáp án » 13/10/2022 124

Câu 9:

Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và có thể tích \[V = \frac{{{a^3}\sqrt 3 }}{6}\]. Tìm số r>0 sao cho tồn tại điểm J nằm trong khối chóp mà khoảng cách từ J đến các mặt bên và mặt đáy đều bằng r?

Xem đáp án » 13/10/2022 124

Câu 10:

Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng 4 và tạo với đáy góc 600. Thể tích của khối chóp đó là:

Xem đáp án » 13/10/2022 124

Câu 11:

Cho hình chóp S.ABC có đáy ABC vuông tại A và SB vuông góc với đáy. Biết SB=a,SC hợp với (SAB) một góc 300 và (SAC) hợp với đáy (ABC) một góc 600. Thể tích khối chóp là:

Xem đáp án » 13/10/2022 123

Câu 12:

Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau, AB=6a,AC=7a,AD=4a. Gọi M,N,P lần lượt là trung điểm của các cạnh BC,CD,DB. Thể tích V của tứ diện AMNP là:

Xem đáp án » 13/10/2022 122

Câu 13:

Cho tứ diện ABCD có G là điểm thỏa mãn \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \]. Mặt phẳng thay đổi chứa BG và cắt AC,AD lần lượt tại M và N. Giá trị nhỏ nhất của tỉ số \[\frac{{{V_{ABMN}}}}{{{V_{ABCD}}}}\] là

Xem đáp án » 13/10/2022 122

Câu 14:

Cho khối chóp tam giác S.ABC, trên các cạnh SA,SB,SC lần lượt lấy các điểm A′,B′,C′. Khi đó:

Xem đáp án » 13/10/2022 120

Câu 15:

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hình chiếu vuông góc của S trên mặt đáy nằm trong hình vuông ABCD. Biết rằng SA và SC tạo với đáy các góc bằng nhau, góc giữa SB và đáy bằng 450, góc giữa SD và đáy bằng α với \[tan\alpha = \frac{1}{3}\]. Tính thể tích khối chóp đã cho.

Xem đáp án » 13/10/2022 119

Câu hỏi mới nhất

Xem thêm »
Xem thêm »