Cho hệ phương trình
a) Giải hệ phương trình với m = 5.
b) Xác định m để hệ phương trình có nghiệm duy nhất thỏa mãn: x + y =12.
a. Với m = 5 ta có hệ phương trình:
Û
Û
Û
Û
Vậy hệ phương trình có cặp nghiệm là (1; 0).
b. Gọi (x0; y0) là nghiệm của hệ phương trình nên ta có 2x0 – y0 = 2
Và (x0; y0) cũng thỏa mãn x0 + y0 = 12 nên ta có hệ phương trình:
Û
Û
Û
Û
Thay cặp nghiệm vào phương trình chứa m của hệ ta được:
Vậy m = thỏa mãn bài toán.
Cho nữa đường tròn tâm O đường kính AB. C là một điểm nằm giữa O và A. Đường thẳng vuông góc với AB tại C cắt nửa đường tròn trên tại I. K là một điểm bất kì nằm trên đoạn thẳng CI (K khác C và I), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt tia CI tại D. Chứng minh:
a) Chứng minh: các điểm A; C; M; D cùng thuộc một đường tròn.
b) Chứng minh CK.CD = CA.CB
c) Gọi N là giao điểm của AD và đường tòn (O) chứng minh: B, K, N thẳng hàng.
Hai giá sách có 450 cuốn. Nếu chuyển 50 cuốn từ giá sách thứ nhất sang giá sách thứ hai thì số sách ở giá thứ hai sẽ bằng số sách còn lại ở giá sách thứ nhất. Tính số sách trong mỗi giá lúc ban đầu.
Cho hàm số y = x2 có đồ thị (P) và hàm số y = ax + b có đồ thị (d).
a) Xác định a và b biết đường thẳng (d) đi qua điểm A(0; 2) và B(1; 3).
b) Với a, b vừa tìm được, hãy tìm tọa độ giao điểm của (P) và (d).
Biết 4x2 + 2y2 + 2z2 – 4xy – 4xz + 2yz – 6y – 10z = –34
Tính giá trị của biểu thức: M = (x – 4)2020 – (y – 4)2021 + (z – 4)2022